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The Monotone Integral 2

dedicated to Prof. Calogero Vinti in Honour of His 70th birthday

Abstract: Here we introduce a new definition of the monotone integral, in infinite dimensional

setting, in order to obtain the equivalence between the Bochner and monotone integrals.

1 Introduction

Given a measurable space (Ω,Σ) and a measurable non negative function f : Ω → R+
0 ,

the monotone integral of f with respect to a set function m defined on Σ can be defined

in terms of the integrability (and previously the measurability) of the function φ(t) =

m({ω ∈ Ω : f(ω) > t}). The monotone integral of a measurable scalar function with

respect to a scalar set function m has been widely studied in literature ([5], [11]).

In [4] an extended definition of the monotone integral has been introduced as an alter-

native way of integrating scalar functions with respect to Banach-valued finitely additive

measures. Nevertheless the definition adopted there turned out to be stronger than ex-

pected: indeed a counterexample given in the same paper shows that there exist scalar
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functions that are integrable in the usual way (namely by approximating via simple func-

tions), but not in the monotone sense.

Since then some attempts to find the ”right” definition of monotone integral, namely

equivalent to the classical integration, have been done, but in a not totally satisfactory way:

in [12] and [13] the equivalence between the strong monotone integral and the classical one

has been shown for finitely additive measures ranging in a Hilbert space or in a nuclear

space, and under a ”nice” condition on the finitely additive measure.

In [1] a definition of the monotone integral for scalar functions with respect to set functions

with values in Dedekind complete Riesz spaces is given.

In this paper we introduce a definition for the monotone integral with respect to a

Banach-valued finitely additive measure which makes use of the Fremlin-McShane inte-

grability of the function φ. Finally, it turns out that this is the right approach in order to

obtain the seeken equivalence of the two theories.

2 Notations and Preliminaries

Troughout this paper we shall use the following notations.

(Ω,Σ) is a measurable space, where Σ is a σ-algebra.

X is a Banach space, X∗ is the topological dual of X.

X1 (resp. X∗
1 ) is the unit ball in X (resp. X∗).

λ is the Lebesgue measure on R and B is the Borel σ-algebra, A is the family of open sets

of R.

m : Σ → X is a strongly bounded finitely additive measure and ‖m‖ is its semivariation.

Since m is strongly bounded, it admits a Rybakov control (see [15]) ν =| x∗0m |, with

x∗0 ∈ X∗
1 .

If f, fn : Ω → R+
0 are Σ-measurable functions, we define the following upper level functions,
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for every E ∈ Σ and for every t ∈ R+
0 :

φ(t) = m(x ∈ Ω : f(x) > t); φE(t) = m(x ∈ E : f(x) > t);

φn(t) = m(x ∈ Ω : fn(x) > t); φEn (t) = m(x ∈ E : fn(x) > t);

Γ(t) = ν(x ∈ Ω : f(x) > t); ΓE(t) = ν(x ∈ E : f(x) > t);

Γn(t) = ν(x ∈ Ω : fn(x) > t); ΓEn (t) = ν(x ∈ E : fn(x) > t);

φ̂(t) = ‖m‖(x ∈ Ω : f(x) > t); φ̂E(t) = ‖m‖(x ∈ E : f(x) > t);

φ̂n(t) = ‖m‖(x ∈ Ω : fn(x) > t); φ̂En (t) = ‖m‖(x ∈ E : fn(x) > t).

Definition 2.1 A generalized McShane partition of R+
0 is a sequence (Tn, tn)n∈N of pair-

wise disjoint measurable sets of finite measure such that λ(R+
0 −

⋃
n Tn) = 0 and tn ∈ R+

0 ,

for every n ∈ N.

Definition 2.2 A gauge is a function ∆ : R+
0 → A such that y ∈ ∆(y) for every y ∈ R+

0 .

Definition 2.3 We say that a generalized McShane partition (Tn, tn)n is subordinate to

a gauge ∆ if for every n ∈ N, Tn ⊂ ∆(tn).

Definition 2.4 An Henstock partition of [0, 1] is a finite family of non overlapping inter-

vals ([ai, ai+1], ti)i≤n which covers [0, 1] and such that for every 1 ≤ i ≤ n, ti ∈ [ai, ai+1].

Given a gauge ∆ : [0, 1] → A an Henstock partition is subordinate to ∆ if

[ai, ai+1] ⊂ ∆(ti),

for every i = 1, ..., n.

Definition 2.5 A partial Mc Shane partition of IR+
0 is a countable family (Tn, tn)n where

(Tn)n is a disjoint family of sets of finite λ-measure, and tn ∈ IR+
0 for every n ∈ N; and it

is subordinate to a gauge ∆ if Tn ⊂ ∆(tn) for every n.

Definition 2.6 ([9]) A function φ : IR+
0 → X is McShane-integrable on IR+

0 if there exists

w ∈ X such that for every ε > 0 there exists a gauge ∆(ε) : IR+
0 → A such that

lim sup
n→∞

∥∥∥∥∥w −
n∑
i=1

λ(Ti)φ(ti)

∥∥∥∥∥ ≤ ε

for every generalized McShane partition (Ti, ti)i subordinate to ∆(ε).
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Definition 2.7 Let f : Ω → R+
0 be a measurable function. We say that f is (?)-

integrable if, for every E ∈ Σ, there exists an element wE ∈ X, such that for every

ε > 0 there exists a gauge ∆(ε) : IR+
0 → A (the gauge must be the same for every E ∈ Σ)

such that

lim sup
n→∞

∥∥∥∥∥wE −
n∑
i=1

λ(Ti)φE(ti)

∥∥∥∥∥ ≤ ε

for every generalized McShane partition (Ti, ti)i subordinate to ∆(ε), and we set∫ ?

E
fdm = wE .

Definition 2.8 Let f : Ω → R. We say that f is (?)-integrable iff f+, f− are (?)-

integrable and we define ∫
E

?

fdm =
∫
E

?

f+dm−
∫
E

?

f−dm.

We denote by L?,1(m) the class of (?)-integrable functions.

Definition 2.9 ([4]) Let f : Ω → R be a measurable function. Then f is m-integrable if

there exists a sequence of simple functions (fn)n such that (fn)n ν-converges to f for any

control ν for m and the sequence (
∫
F
fndm)n converges in X for every F ∈ Σ. In this case

we set ∫
(·)
fdm = limn→∞

∫
(·)
fndm.

We denote by L1(m) the space of m-integrable functions.

If X is separable we can introduce also the following definition of integrability:

Definition 2.10 ([4]) Let f : Ω → R+
0 be a measurable function. Then f is (̂ )-

integrable with respect to m if φ̂(t) is Lebesgue integrable. In this case φ(t) is Bochner-

integrable and we set ∫̂
(·)
fdm =

∫ ∞

0
φ(t)dt.

We denote by L̂1(m) the class of (̂ )-integrable functions.

Observe that, if X is separable, and f is measurable then φ is weakly of bounded variation

and therefore weakly measurable. By Pettis Theorem [14], φ is measurable.
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3 Measurability of the distribution functions

Lemma 3.1 Let f : Ω → R+
0 be a (?)-integrable function. Then

lim
t→∞

‖m‖({ω ∈ Ω : f(ω) > t}) = 0.

Proof: Since f is (?)-integrable, then by Proposition 1Q of [9] f ∈ L1(x∗0m), by Lemma

3.5 of [4] f ∈ L1(ν). By Markov inequality it follows that

ν({ω ∈ Ω : f(ω) > t}) ≤ 1
t

∫
Ω
fdν.

Using the ν-continuity of ‖m‖ we have

lim
t→∞

‖m‖({ω ∈ Ω : f(ω) > t}) = 0.

Though the Mc Shane definition of integrability does not request the measurability of

the integrand φ, Fremlin, in [9], proves that the integrand is weakly measurable. Here we

prove that if f is (?)-integrable then φ is totally measurable.

Proposition 3.2 Let f : Ω → R+
0 be a measurable function such that

lim
t→∞

‖m‖({ω ∈ Ω : f(ω) > t}) = 0.

Then the function φ : R+
0 → X defined by φ(t) = m(f > t) is λ-totally measurable.

Proof: LetH be the set of the discontinuity points of φ̂. Observe that by the monotonicity

of the functions φ̂ and Γ, H is a countable set. Hence λ(H) = 0.

For every n ∈ N and for every k = 0, ..., n2n − 1 we set

En,k = {ω ∈ Ω :
k

2n
≤ f(ω) <

k + 1
2n

} En,n2n = {ω ∈ Ω : f(ω) ≥ n}.

We define

fn(ω) =
n2n−1∑
k=0

k

2n
· 1En,k

(ω) + 0 · 1En,n2n (ω).

The sequence of simple functions (fn)n satisfies the following conditions:
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a) fn(ω) ≤ f(ω) ∧ n, for every ω ∈ Ω and for every n ∈ N;

b) limn→∞fn(ω) = f(ω), for every ω ∈ Ω;

c) the sets En,k are pairwise disjoint and
⋃n2n

k=0En,k = Ω.

φn is a simple function and for every t ∈ R+
0 we have

φn(t) = m{ω ∈ Ω :
n2n−1∑
k=0

k

2n
· 1Ek,n

(ω) > t} =
n2n−1∑
k=0

m{ω ∈ En,k :
k

2n
> t}.

and

φ(t) =
n2n∑
k=0

m{ω ∈ En,k : f(ω) > t}.

Thus, for every t ∈ R+
0 \H and for every n ∈ N with n > t there exists k(n, t) such that

‖φ(t)− φn(t)‖ ≤ ‖m‖(En,k(n,t)) + ‖m‖(En,n2n).

Setting an = k(n)
2n and bn = k(n)+1

2n we obtain an ≤ an+1 ≤ t ≤ bn+1 ≤ bn for every n ∈ N
and limn→∞an = t and limn→∞bn = t.

Then

‖φ(t)− φn(t)‖ ≤ ‖m‖(En,k(n,t)) + ‖m‖(En,n2n) = ‖m‖(f−1([an, bn[)) + ‖m‖(En,n2n)

By hypothesis limn→∞‖m‖(En,n2n) = 0. Since µ is finitely additive,

ν(f−1([an, bn[)) ≤ µ(f ≥ an)− ν(f > bn).

We shall prove that limn→∞ν(f ≥ an) = ν(f > t).

Let (a
′
n)n be a non increasing sequence such that for every n ∈ N, a

′
n ≤ an, a

′
n ↑ t and

ν(f > a
′
n) = ν(f ≥ a

′
n).

Obviously

ν(f > t) ≤ ν(f ≥ an) ≤ ν(f ≥ a
′
n) = ν(f > a

′
n).

By the monotonicity of φ̂ and since t 6∈ H

lim
n→∞

ν(f > a
′
n) = ν(f > t)
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and so the assertion follows.

Thus for every t ∈ R+
0 \H we obtain, since m� ν,

limn→∞ ‖φ(t)− φn(t)‖ = 0.

4 Comparison

Proposition 4.1 Let f : Ω → R+
0 be a simple measurable function. Then f is (?)-

integrable and m-integrable and the two integrals coincide.

Proof: It is enough to prove the result for indicator functions. In fact the Mc Shane

integral is additive, see for example [9] 1C. Let f = x · 1H , where x ∈ R+
0 ,H ∈ Σ.

Obviously f is m-integrable with
∫
· fdm = x ·m(· ∩H). For every E ∈ Σ we have

φE(t) = m(E ∩H) · 1[0,x[(t).

For every ε > 0 let F be a closed subset of [0, x[ such that λ([0, x[\F ) ≤ ε. We define

∆ε : R+
0 → A as follows:

∆ε(s) =


[0, x[ if s ∈ F

[0, x[\F if s ∈ [0, x[\F
IR+

0 \ F if s ∈ [x,+∞[

Let (Ti, ti)i be a generalized McShane partition of R+
0 subordinated to ∆ε.

‖x ·m(E ∩H)−
∑
i≤n

λ(Ti)φE(ti)‖ = ‖x ·m(E ∩H)−
∑

i≤n,ti<x
λ(Ti)m(E ∩H)‖ =

= ‖m(E ∩H)‖ · |x−
∑

i≤n,ti<x
λ(Ti)| ≤ ‖m‖(Ω) · |x−

∑
i≤n,ti<x

λ(Ti)|.

(Ti ∩ F )i is such that λ(F −
⋃
ti∈F Ti) = 0. Since

⋃
ti<x

Ti ⊃
⋃
ti∈F Ti ⊃

⋃
ti∈F (Ti ∩ F )

lim
n

λ

[0, x[\
⋃

i≤n,ti<x
Ti

 = λ

(
[0, x[\

⋃
ti<x

Ti

)
≤ λ

[0, x[\
⋃
ti∈F

Ti

 ≤

≤ λ

[0, x[\
⋃
ti∈F

(Ti ∩ F )

 = x− λ

(⋃
ti<x

(Ti ∩ F )

)
= x− λ(F ) ≤ ε.
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So the assertion follows.

Now we want to compare L1(m) and L?,1(m). To obtain this we need some preliminary

results.

Proposition 4.2 Let fΩ → R+
0 be a measurable function such that

lim
t→∞

‖m‖({ω ∈ Ω : f(ω) > t} = 0).

Let

fn(ω) =
∑k=n2n−1

k=0
k
2n 1En,k

(ω) where En,k =
{
ω ∈ Ω : k

2n ≤ gf(ω) < k+1
2n

}
.

Then the simple functions φn, which are the upper level sets of fn, are Bochner integrable.

Proof: By Proposition 3.2 the functions φn are totally measurable; since they are simple,

they are Bochner integrable.

Proposition 4.3 Let ∆ : R+
0 → A be a gauge. Then for every ε > 0 there exists a

generalized McShane partition (En, tn)n∈N of R+
0 subordinate to ∆ such that for every

n ∈ N

1) En = [an, an+1], where a0 = 0;

2) tn ∈ En;

3) an+1 − an < ε.

Proof: Let ε > 0. Let ∆n = ∆ |[ ε
2
n, ε

2
(n+1)]. Applying Lemma 5 of [6] whenK = A = [ ε2n,

ε
2(n+ 1)]

there exists a partial Henstock partition ([ani , a
n
i+1], ti)i≤k(n) subordinate to ∆ such that

[ani , a
n
i+1] ⊂ [ ε2n,

ε
2(n+ 1)], ti ∈ [ani , a

n
i+1], for every i = 1, ..., k(n) and [ ε2n,

ε
2(n+ 1)] ⊂

⋃
i≤k(n)[a

n
i , a

n
i+1].

Now we consider the family ([ani , a
n
i+1], ti)i≤k(n),n∈N. This is the desired generalized Mc-

Shane partition of R+
0 .

Theorem 4.4 Let f : Ω → R+
0 be a (?)-integrable function. Then f is m-integrable and

for every E ∈ Σ ∫
E
fdm =

∫ ?

E
fdm.
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Proof: Let f be (?)-integrable; then for every E ∈ Σ there exists wE ∈ X such that for

every ε > 0 there exists ∆(ε) : R+ → A which must be the same for every E, such that

lim sup
n→+∞

∥∥∥∥∥∥wE −
∑
i≤n

φE(ti)λ(Ti)

∥∥∥∥∥∥ ≤ ε

for every generalized McShane partition (T εi , ti)i∈N subordinate to ∆(ε).

Let ε > 0 be fixed. By Proposition 4.3 we can consider a generalized McShane partition

subordinate to ∆(ε) of the form ([aεi , a
ε
i+1], t

ε
i )i∈N such that tεi ∈ [aεi , a

ε
i+1], aεi+1 − aεi < ε

and
⋃
i∈N[aεi , a

ε
i+1] = R+

0 . Then, for every E ∈ Σ,

lim sup
n→+∞

∥∥∥∥∥wE −
n∑
i=1

φE(tεi )(a
ε
i+1 − aεi )

∥∥∥∥∥ ≤ ε.

Now we want to show that it is possible to construct a simple function, indipendent of E,

such that its Bochner integral is close to wE .

For every i ∈ N. we denote by Aεi , C
ε
i the following sets:

Aεi = f−1([aεi , a
ε
i+1]), Cεi = f−1(]tεi ,+∞[)

Let g(ε)
n =

n∑
i=0

(aεi+1 − aεi ) · 1Cε
i
. The simple function g(ε)

n is m and (?)-integrable and

∫
E
g(ε)
n dm =

n∑
i=0

(aεi+1 − aεi )φ
E(tεi ).

Then, it follows that

lim sup
n→∞

∥∥∥∥wE − ∫
E
g(ε)
n dm

∥∥∥∥ ≤ ε.

Observe also that, if ω ∈ Aεi , i ≤ n

g(ε)
n (ω) =

{
aεi if aεi ≤ f(ω) ≤ tεi

aεn+1 if tεi < f(ω) ≤ aεn+1,

and therefore |f(ω)− g
(ε)
n (ω)| ≤ ε unifomly in

⋃
i≤nA

ε
i .
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Now we want to show that there is a sequence (gn)n of defining simple functions.

Let (εk)k be a decreasing sequence of positive numbers converging to 0 and let σk = 2εk.

Given ε1 and the sequence (g(ε1)
n )n there exists an integer n(ε1) such that for every n ≥

n(ε1) ∥∥∥∥wE − ∫
E
g(ε1)
n dm

∥∥∥∥ < σ1.

Then we set b1 = a
(ε1)

n(ε1)+1
and g1(ω) = g

(ε1)

n(ε1)+1
(ω). So

| x∗0m | (| g1 − f |> σ1) ≤| x∗0m | (f > b1).

If ω ∈ Aε1i with i ≤ n(ε1) + 1 then

| g1(ω)− f(ω) |< ε1 < σ1.

We consider now ε2 > 0. Then there exists an integer ñ(ε2) > n(ε1) such that for every

n ≥ ñ(ε2) ∥∥∥∥wE − ∫
E
g(ε2)
n dm

∥∥∥∥ ≤ σ2.

We define now

b2 = min{a(ε2)
j : a(ε2)

j ≥ max{b1 + 2, añ(ε2)+1}}

Then we set b2 = a
(ε2)

n(ε2)+1
and g2 = g

(ε2)

n(ε2)+1
. Thus

| x∗0m | (| f − g2 |> σ2) ≤| x∗0m | (f > b2).

Iterating this procedure we obtain a sequence of integers (nk)k where nk = n(εk) + 1,

a sequence of real numbers (bk)k such that limk→∞ bk = +∞ and a sequence of simple

functions (gk)k defined by gk = g
(εk)
nk such that it fulfills the relationships

|x∗0m|(|f − gk| > σk) ≤ |x∗0m|(f > bk)∥∥∥∥∫
E
gkdm− wE

∥∥∥∥ ≤ σk.

So we have

lim
k→∞

∥∥∥∥∫
E
gkdm− wE

∥∥∥∥ = 0.
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It only remains to prove that gk ν-converges to f , for any control ν.

Let α > 0. Since limk→∞ σk = 0 there exists k such that for every k ≥ k, σk < α.

Then

{ω ∈ Ω :| gk(ω)− f(ω) |> α} ⊂ {ω ∈ Ω :| gk(ω)− f(ω) |> σk} ⊂ {ω ∈ Ω : f(ω) > bk}.

By Lemma 3.1 it follows

lim
k→∞

ν(ω : f(ω) > bk) = 0

and hence the convergence follows.

Before proving the converse implication, we point out that the results given in [4],

section 2, hold also if X is not separable.

Proposition 4.5 Let f : Ω → R+
0 be a bounded, measurable function. Then f is (?)-

integrable and the two integrals coincide.

Proof: Since f is bounded let I ⊂ R+
0 be a bounded interval such that f(x) ∈ I for every

x ∈ Ω. By using Lebesgue ladder trick it is possible to construct a sequence (fn)n of

simple functions which converges to f uniformly, with fn ≤ fn+1 ≤ f for every n.

We set now

hn(t) = ‖m‖(x ∈ Ω : f(x) > t, fn(x) ≤ t); hEn (t) = ‖m‖(x ∈ E : f(x) > t, fn(x) ≤ t).

Let ε > 0 be fixed and consider δ(ε) > 0 such that if ν(A) ≤ δ then ‖m‖(A) ≤ ε.

By Theorem 3.2 of [4] φ is Bochner integrable, and let wE be its integral. So first we want

to prove that for every ε > 0 there exists n such that
∫
I
‖φE(t)− φEn (t)‖dt ≤ ε for every

E ∈ Σ.

We observe that the family {‖φE(t) − φEn (t)‖, E ∈ Σ} is such that for every t ∈ R+
0 :

Γ(t)− Γn(t) ≤ δ hence ‖φE(t)− φEn (t)‖ ≤ ε uniformly with respect to E ∈ Σ.

Since ∫
E
fdν =

∫
I
ΓE(t)dt, lim

n

∫
I
Γ(t)− Γn(t)dt = 0
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for every fixed ε > 0 there exists n such that for every n ≥ n∫
I
Γ(t)− Γn(t)dt ≤

ε

‖m‖(Ω) + λ(I)
· δ
(

ε

‖m‖(Ω) + λ(I)

)
.

Then, by Markov inequality,

λ

(
t ∈ R+

0 : Γ(t)− Γn(t) > δ

(
ε

‖m‖(Ω) + λ(I)

))
≤

∫
I
Γ(t)− Γn(t)dt

δ
(

ε
‖m‖(Ω)+λ(I)

) ≤ ε

‖m‖(Ω) + λ(I)

and so, for every E ∈ Σ, by inclusion,

λ

(
t ∈ R+

0 : hEn (t) >
ε

‖m‖(Ω) + λ(I)

)
≤ ε

‖m‖(Ω) + λ(I)

in fact, if t ∈ R+
0 is such that

hEn (t) >
ε

‖m‖(Ω) + λ(I)

then

Γ(t)− Γn(t) > δ

(
ε

‖m‖(Ω) + λ(I)

)
.

Then, for every E ∈ Σ, and for every n ≥ n∫
I
‖φE(t)− φEn (t)‖dt ≤

∫
I
hEn (t)dt =

=
∫

(t∈I:hE
n (t)≤ ε

‖m‖(Ω)+λ(I)
)
hEn (t)dt+

∫
(t∈I:hE

n (t)> ε
‖m‖(Ω)+λ(I)

)
hEn (t)dt

≤ ε

‖m‖(Ω) + λ(I)
λ(I) + ‖m‖(Ω) · λ

(
t : hEn (t) >

ε

‖m‖(Ω) + λ(I)

)
≤ ε.

We denote by ΨE(t) = φn
E(t) and with wE0 its Bochner integral. So

‖wE − wE0 ‖ ≤ ε. (1)
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Since fn is simple, then it is (?)-integrable and so there exists a gauge ∆0
ε such that for

every E ∈ Σ

lim sup
n→∞

‖wE0 −
n∑
i=1

λ(Ti)ΨE(ti)‖ ≤ ε (2)

for every generalized Mc Shane partition (Ti, ti)i subordinated to ∆0
ε.

Now we want to prove that there exists a gauge ∆1
ε such that for every E ∈ Σ and for

every generalized Mc Shane partition (Si, si)i subordinated to ∆1
ε∑

i

λ(Si)‖φE(si)−ΨE(si)‖ ≤ 2ε.

Consider g(t) = hn(t), by Lemma 1J of [9], there exists a gauge ∆1
ε such that

∑
i

λ(Si)g(si) ≤
∫
I
g(t)dt+ ε

for every generalized Mc Shane partition (Si, si)i subordinated to ∆1
ε. So,

∑
i

λ(Si) · ‖φE(si)−ΨE(si)‖ =
∑
i

λ(Si) · ‖m(x ∈ E : f(x) > si, fn(x) ≤ si)‖ ≤

≤
∑
i

λ(Si) · hnE(si) ≤
∑
i

λ(Si) · g(si) ≤

≤
∫
I
g(t)dt+ ε ≤ 2ε. (3)

Let now ∆ε = ∆1
ε ∩∆0

ε. Then for every generalized Mc Shane partition (Ti, ti)i subordi-

nated to ∆ε, by (1), (2) and (3)

lim sup
n

‖wE −
n∑
i=1

λ(Ti)φE(ti)‖ ≤ ‖wE − wE0 ‖+ lim sup
n

‖wE0 −
n∑
i=1

λ(Ti)ΨE(ti)‖+

+
∑
i

λ(Ti)‖ΨE(ti)− φE(ti)‖ ≤ 4ε.

The equality between the two integrals follows by Theorem 4.4. .

Before proving the converse implication we need some preliminary technical lemmata.
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In these lemmata if f is a function, set fn = f ∧ n and φ(·)
n (t) = m(x ∈ (·) : fn > t).

Lemma 4.6 If f : Ω → R+
0 is m-integrable then, for every B ∈ B and for every E ∈ Σ

lim
n→∞

∫
B
φEn (t)dt ∈ X

and moreover, for every x? ∈ X?,

x?
(

lim
n→∞

∫
B
φEn (t)dt

)
=
∫
B
x?φE(t)dt.

Proof: For every n ∈ N, let φEn (t) = m{ω ∈ E : f(ω) ∧ n > t}; then, by Proposition

4.5, φEn is Mc Shane integrable and, for every ε > 0 and for every n ∈ N, there exists a

gauge ∆n(ε) which satisfies the definition of (?)-integrability. Now we want to prove that

limn→∞
∫
B φ

E
n (t)dt exists in X. Observe that for every t ∈ R+

0 , φ
E
n (t) converges to φE(t)

and, for every B ∈ B,

limn→∞

∫
B
φEn (t)dt ∈ X.

In fact, it suffices to prove that
(∫

B
φEn (t)dt

)
n

is Cauchy in X for every B ∈ B.

Let x? ∈ X?
1 be fixed, and let n, p ∈ IN with p > n. Then

|< x?|
∫
B
φEn dt−

∫
B
φEp dt >|≤ 4 sup

A⊂E

∥∥∥∥∫
A
(fp − fn)dm

∥∥∥∥
which converges to zero since (fn)n is Cauchy in L1(m).

Then for every ε > 0 there exists n0 such that for every n, p > n0 and for every B ∈
B, x? ∈ X?

1

| < x?|
∫
B
φEn dt−

∫
B
φEp dt > | ≤ ε,

and hence
(∫

B
φEn dt

)
n

is Cauchy uniformly in E and B.

Since f ∈ L1(m) then, for every x? ∈ X?, f ∈ L1(x?m) and, by Lemma 3.5 of [4],

f ∈ L1(|x?m|).
By Theorem 3.6 of [4] f ∈ L̂1(|x?m|), then for every E ∈ Σ

|x?φEn (t)| ≤ |x?m|(f > t) ∈ L1(λ)
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and x?φEn converges pointwise to x?φE . So

x?
(

lim
n

∫
B
φEn (t)dt

)
=
∫
B
x?φE(t)dt.

Lemma 4.7 If f : Ω → R+
0 is m-integrable then, for every convex combination of φ(·)

i ,

φ
(·)
co =

∑
j≤nαjφ

(·)
j and for every ε > 0 there exists a gauge ∆ such that for every E ∈ Σ

and for every k ∈ N, ∥∥∥∥∥∥
∫
B
φEco(t)dt−

∑
i≤k

λ(Si)φEco(si)

∥∥∥∥∥∥ ≤ ε

for every partial Mc Shane partition (Si, si)i∈N of R+
0 subordinated to ∆ and such that

B =
⋃
i≤k Si.

Proof: Let n ∈ N+, and let (α0, · · · , αn) be fixed in the (n+ 1)-th dimensional symplex.

Let

Γ(t) =
∑
j≤n

αj · ν({x ∈ Ω : f(x) ∧ j > t}),

and

φEco(t) =
∑
j≤n

αj ·m({x ∈ E : f(x) ∧ j > t}).

By construction Γ is a scalar Lebesgue integrable function and, by Lemma 2B of [9],

for every σ > 0 there exists a gauge ∆σ such that for every k ∈ N∣∣∣∣∣∣
∫
B

Γ(t)dt−
∑
i≤k

λ(Si)Γ(si)

∣∣∣∣∣∣ ≤ σ (4)

for every generalized Mc Shane partition (Si, si)i∈N of R+
0 subordinated to ∆σ, where

B =
⋃
i≤k Si. In fact a generalized Mc Shane partition (Si, si)i∈N is a partial one and we

can apply Lemma 2B of [9] to (Si, si)i≤k.

Fix ε > 0. If we take

σ = σ(ρ) = infj≤n{αj : αj 6= 0} · ρ · τ(ρ)

where

ρ =
ε

4(n+ 1)[n+ ‖m‖(Ω)]
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and τ(·) is that of the absolute continuity of ‖m‖ with respect to ν, we want to show that,

for every E ∈ Σ, ∥∥∥∥∥∥
∫
B
φEco(t)dt−

∑
i≤k

λ(Si)φEco(si)

∥∥∥∥∥∥ ≤ ε. (5)

Let (Si, si)i∈N be a partial Mc Shane partition subordinated to ∆σ and let

Vi = Si ∩ [0, si[ Ui = Si ∩ [si,+∞[.

We can observe that the partitions

Π1 =
{
(V1, s1), · · · , (Vk, sk), (U1, s1), · · · (Uk, sk), (Sk+p, sk+p), p ∈ IN+

}
Π2 =

{
(U1, s1), · · · (Uk, sk), (V1, s1), · · · , (Vk, sk), (Sk+p, sk+p), p ∈ IN+

}
are also subordinated to ∆σ and so, by (4),∣∣∣∣∣∣

∫
∪i≤kVi

Γ(t)dt−
∑
i≤k

λ(Vi)Γ(si)

∣∣∣∣∣∣ ≤ σ; (6)

∣∣∣∣∣∣
∫
∪i≤kUi

Γ(t)dt−
∑
i≤k

λ(Ui)Γ(si)

∣∣∣∣∣∣ ≤ σ. (7)

Set now

Θ(t) = Γ(t)−
∑

i≤k1Si(t) · Γ(si).

If t ∈ Vi, i ≤ k then t < si and

Θ(t) = 1Vi(t) ·
∑

j≤nαj · ν({x ∈ Ω : t < f(x) ∧ j ≤ si})

while, if t ∈ Ui, i ≤ k, t ≥ si and

Θ(t) = −1Ui(t) ·
∑

j≤nαj · ν({x ∈ Ω : si < f(x) ∧ j ≤ t}).
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Then, (6) and (7), become ∫
∪i≤kVi

Θ(t)dt ≤ σ; (8)

∫
∪i≤kUi

−Θ(t)dt ≤ σ. (9)

Let E ∈ Σ be fixed and let

ψEco(t) =
∑

i≤k1Si(t) · φEco(t).

For every t ∈ B = ∪i≤kSi we have

φEco(t)− ψEco(t) =
[∑

i≤k1Vi(t) · φEco(t)−
∑

i≤k1Vi(t) · φEco(si)
]

+

+
[∑

i≤k1Ui(t) · φEco(t)−
∑

i≤k1Ui(t) · φEco(si)
]

=

=
∑

i≤k1Vi(t) ·
∑

j≤nαj ·m(x ∈ E : t < f(x) ∧ j ≤ si) +

−
∑

i≤k1Ui(t) ·
∑

j≤nαj ·m(x ∈ E : si ≤ f(x) ∧ j < t);

and so, for every t ∈ B

‖φEco(t)− ψEco(t)‖ ≤ ‖m‖(Ω)
∑

j≤nαj = ‖m‖(Ω).

Let now η > 0 be fixed. If t ∈ Vi, i ≤ k is such that

‖φEco(t)− ψEco(t)‖ > (n+ 1)η

then

(n+ 1)η ≤
∥∥∥1Vi(t)

∑
j≤nαj m(x ∈ E : t < f(x) ∧ j ≤ si)

∥∥∥ ≤
≤

∑
j≤nαj ‖m‖(x ∈ E : t < f(x) ∧ j ≤ si)

and so there exists j∗ ∈ {0, 1, · · · , n} such that

‖m‖(x ∈ E : t < f(x) ∧ j∗ ≤ si) ≥ αj∗‖m‖(x ∈ E : t < f(x) ∧ j∗ ≤ si) > η.
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Since ‖m‖ � ν then it follows that

ν(x ∈ Ω : t < f(x) ∧ j∗ ≤ si) ≥ ν(x ∈ E : t < f(x) ∧ j∗ ≤ si) ≥ τ(η)

and so

Θ(t) =
∑

j≤nαj · ν(x ∈ Ω : t < f(x) ∧ j ≤ si) ≥ αj∗ · τ(η).

Namely

{
t ∈ Vi : ‖φEco(t)− ψEco(t)‖ > (n+ 1)η

}
⊂ {t ∈ Vi : Θ(t) > infj≤n{αj : αj 6= 0} · τ(η)} ;

analogously

{
t ∈ Ui : ‖φEco(t)− ψEco(t)‖ > (n+ 1)η

}
⊂ {t ∈ Ui : −Θ(t) > infj≤n{αj : αj 6= 0} · τ(η)}

which means that

{
t ∈ Si : ‖φEco(t)− ψEco(t)‖ > (n+ 1)η

}
⊂ {t ∈ Si : |Θ(t)| > infj≤n{αj : αj 6= 0} · τ(η)} .

In particular, for η = ρ

{
t ∈ Si : ‖φEco(t)− ψEco(t)‖ > (n+ 1)ρ

}
⊂ {t ∈ Si : |Θ(t)| > infj≤n{αj : αj 6= 0} · τ(ρ)} .

From (8), (9) and by Markov inequality

λ(t ∈ Si : |Θ(t)| > infj≤n{αj : αj 6= 0}τ(ρ)) ≤ 1
infj≤n{αj : αj 6= 0}τ(ρ)

∫
Si

|Θ(t)|dt

and so

λ(t ∈ Si : |Θ(t)| > infj≤n{αj : αj 6= 0}τ(ρ)) ≤

≤ 1
infj≤n{αj : αj 6= 0}τ(ρ)

∫
Si

|Θ(t)|dt ≤ 1
infj≤n{αj : αj 6= 0}τ(ρ)

2σ =

=
1

infj≤n{αj : αj 6= 0}τ(ρ)
2 inf
j≤n

{aj : aj 6= 0}ρτ(ρ) =

= 2ρ =
ε

2(n+ 1)[n+ ‖m‖(Ω)]
.
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Then, by inclusion,

λ(t ∈ Si : ‖φEco(t)− ψEco(t)‖ > (n+ 1)ρ) ≤ ρ.

So ∥∥∥∥∥
∫
B∩[0,n]

φEco(t)dt−
∑

i≤kλ(Si)φEco(si)

∥∥∥∥∥ =

∥∥∥∥∥
∫
B∩[0,n]

[φEco(t)− ψEco(t)]dt

∥∥∥∥∥ ≤ (10)

≤
∫
B∩[0,n]

‖φEco(t)− ψEco(t)‖dt ≤
∫
∪i≤kB∩[0,n]∩(t∈Si:‖φE

co(t)−ψE
co(t)‖>(n+1)ρ)

‖φEco(t)− ψEco(t)‖dt+

+
∫
∪i≤kB∩[0,n]∩(t∈Si:‖φE

co(t)−ψE
co(t)‖≤(n+1)ρ)

‖φEco(t)− ψEco(t)‖dt ≤ ‖m‖(Ω) · 2ρ+ n(n+ 1)ρ ≤

≤ 2‖m‖(Ω) · ε

4(n+ 1)[n+ ‖m‖(Ω)]
+ n(n+ 1)

ε

4(n+ 1)[n+ ‖m‖(Ω)]
≤ ε.

Theorem 4.8 If f : Ω → R+
0 is m-integrable, then f is (?)-integrable, and for every

E ∈ Σ ∫
E
fdm =

∫ ?

E
fdm.

Proof: Let fn = f∧n; by Lemma 4.6, for everyB ∈ B and for every E ∈ Σ, limn

∫
B φ

E
n (t)dt ∈

X so we can define wEn , w
E : B → X as follows: wEn (B) =

∫
B φ

E
n (t)dt, wE(B) = limn→∞wEn (B);

moreover, for every x? ∈ X?,

x?
(

lim
n

∫
B
φEn (t)dt

)
=
∫
B
x?φE(t)dt. (11)

Now we are going to construct a suitable family of sets so that a gauge similar to that in

point (C) of Theorem 4A of [9] can be defined.

Let

Γ =

{
(r, α0, . . . , αn) : r, n ∈ N, αi ∈ Q ∩ [0, 1] ∀i = 0, . . . , n,

n∑
i=0

αi = 1

}

For γ ∈ Γ : γ = (rγ , α0, . . . , αn) let

φEγ =
n∑
i=0

αiφ
E
i , φ̂(t) = ‖m‖(x ∈ Ω : f(x) > t).
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For every ε > 0 let h : R+
0 → R+ be an integrable function such that

∫∞
0 h(t)dt < ε and

let

Rγ =

t ∈ [0, n[: h(t) >
1

1 + rγ
, φ̂(t) ≤ rγ ,

n−1∑
j=0

1[j,j+1[(t)
j∑
i=0

αiφ̂(t) ≤ h(t)

 .

It is Rγ ∈ B and R+
0 =

⋃
γ∈ΓRγ .

In fact, for every t0 ∈ R+
0 fixed, t0 ∈ [[t0], [t0] + 1[ and, setting λ0 = φ̂(t0)

h(t0) , there exists

r0 ∈ N+ such that h(t0) > 1
1+r0

and φ̂(t0) ≤ r0, and there exists q0 ∈ Q ∩ [1,∞] such that

λ0 < q0. If we set n = [t0] + 1 and γ0 = (r0, 0, · · · , 0, 1
q0
, 1− 1

q0
), then t0 ∈ Rγ0 ; in fact by

construction

[t0]∑
j=0

1[j,j+1[(t0)
j∑
i=0

αiφ̂(t0) = α[t0]φ̂(t0)1[ [t0],[t0]+1[ =
1
q0
φ̂(t0)1[ [t0],[t0]+1[ ≤

1
λ0
φ̂(t0)1[ [t0],[t0]+1[ = h(t0)

and the other properties are easily verified.

Observe that, by construction, the level sets of f and fn differ only for levels greater then

or equal to n; therefore φE(t) and φEn (t) are equal for t < n; since
∑n

i=0 αi = 1 by writing

φE(t) =
∑n

i=0 αiφ
E(t), we find that

φEγ (t) =
n∑
i=0

αiφ
E
i (t) =



∑n
i=1 αiφ

E
i (t) 0 ≤ t < 1,∑n

i=2 αiφ
E
i (t) 1 ≤ t < 2,

...

αnφ
E
n (t) n− 1 ≤ t < n,

φE(t)− φEγ (t) =


α0φ

E(t) 0 ≤ t < 1,∑1
i=0 αiφ

E(t) 1 ≤ t < 2,
...∑n−1

i=0 αiφ
E(t) n− 1 ≤ t < n,

so, for every E ∈ Σ and for every t ∈ [0, n[

‖φE(t)− φEγ (t)‖ ≤
n−1∑
j=0

1[j,j+1[(t)
j∑
i=0

αiφ̂(t) (12)
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Suppose now that γ ∈ Γ and H ∈ Rγ ∩ B; then by (11),

‖wE(H)−
∫
H
φEγ (t)dt‖ = sup

x∗∈X∗
1

∣∣∣∣x∗wE(H)− x∗
∫
H
φEγ (t)dt

∣∣∣∣ ≤ sup
x∗∈X∗

1

∫
H
|x∗(φE(t)− φEγ (t))|dt ≤

≤
∫
H
‖φE(t)− φEγ (t)‖dt ≤

∫
H
h(t)dt (13)

Let now (R
′
γ)γ∈Γ be a disjoint family of measurable sets such that

⋃
γ R

′
γ = R+

0 and

R
′
γ ⊂ Rγ for every γ.

Let (εγ)γ be a family of positive numbers such that
∑

γ(1 + rγ)εγ ≤ ε.

Let δγ = εγ
‖m‖(Ω) . For every n ∈ N, and for every B ∈ B such that λ(B) ≤ δγ we have

‖
∫
B φ

E
n (t)dt‖ ≤ ‖m‖(Ω)λ(B) ≤ εγ for every E ∈ Σ. So ‖wE(B)‖ = limn ‖wEn (B)‖ ≤ εγ .

Let Gγ be an open set which contains Rγ and such that λ(Gγ −Rγ) ≤ min{εγ , δγ}.
For every γ ∈ Γ, by Lemma 4.7 applied to φ(·)

γ and εγ , there exists a gauge ∆γ such that

for every E ∈ Σ and for k∥∥∥∥∥∥
∫
B
φEγ (t)dt−

∑
i≤k

λ(Ti)φEγ (ti)

∥∥∥∥∥∥ ≤ εγ (14)

for every partial Mc Shane partition of R+
0 subordinated to ∆γ such that B = ∪i≤nTi.

By 1J of [9] applied to h there exists a gauge ∆∗ such that

∑
i≤n

λ(Ti)h(ti) ≤ 2ε (15)

for every partial Mc Shane partition of R+
0 subordinated to ∆∗.

For every t ∈ R′
γ let

∆(t) = ∆γ(t) ∩Gγ ∩∆∗(t).

∆ is the suitable gauge to prove that f is (?)-integrable.

As in part (d) of Theorem 4A of [9] one shows that

lim sup
n
‖wE(R+

0 )−
n∑
i=1

λ(Ti)φE(ti)‖ ≤ 8ε,

for every E ∈ Σ and for every generalized Mc Shane partition (Ti, ti)i subordinated to ∆.

This proves that f is (∗)-integrable. The equality between the two integrals follows from
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Theorem 4.4.

Suppose now that X is separable. Then L̂1(m) ⊂ L1(m) = L1,∗(m). In fact, by Propo-

sition 3.6 of [4] the first inclusion holds and the equivalence between L1(m) and L1,∗(m)

is a consequence of Theorems 4.4, 4.8 above.

Moreover the example given in [4] shows that the first inclusion is proper.

To obtain the equivalence among the three integrations we have to introduce some

suitable conditions on m.

Corollary 4.9 If m admits a bounded Radon-Nikodym density with respect to ν, then

L̂1(m) = L1(m) = L1,∗(m).

Proof: The first equivalence follows from Theorem 3.9 of [12].
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