On the De Giorgi - Letta integral with respect to
means with values in Riesz spaces™
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Abstract

A monotone integral is given for scalar function, with respect to Riesz space val-
ues means, and also a necessary and sufficient condition to obtain a Radon-Nikodym
density for two means.

A.M.S. Classification: 28A70.

1 Introduction.

Integrals like Kurzweil-Stieltjes, Riemann sums and Bochner have been studied in
vector lattices by Duchon, Riecan and Vrébelova, ([11], [21], [22], Wright ([26], [27]),
McGill ([19]), Sipos ([24]), Malicky ([18]), Cristescu ([8]), Halugka ([15]), Boccuto
([3], [4]), and so on.

In this paper we extend to such spaces the monotone integral, given by Cho-
quet in 1953 ([6]), and developped by De Giorgi-Letta ([9]), Greco ([13]), Brooks-
Martellotti ([5]), and others ([10], [12], [16], etc.).

. . =+
Given a mean p : A — R and a measurable function f : X — IR, , we say that
f is integrable (in the monotone sense) if there exists in R the limit

(0) — lim Oau({x €X: fla)>t}) db.

a——+00

For this integral we obtain some elementary properties and we give some Vitali-type
theorems.

We note that in general this integral is different from the one introduced in [5] for
Banach spaces.

Finally, we prove a version of Radon-Nikodym-type theorems for the introduced
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integral (see also [14]).

Our thanks to Prof. D. Candeloro and A. Martellotti for their helpful sugges-
tions.

2 Preliminaries.

We begin with some definitions.

Definition 2.1 A Riesz space R is called Archimedean if the following property
holds:

2.1.1 For every choice of a,b € R, if na < b for all n € IV, then a < 0.

Definition 2.2 A Riesz space R is said to be Dedekind complete [resp. o-Dedekind
complete] if every nonempty [countable] subset of R, bounded from above, has supre-
mum in R.

The following results are well-known (see [1], [2]).

Proposition 2.3 FEvery o-Dedekind complete Riesz space is Archimedean.

Theorem 2.4 Given an Archimedean | Dedekind complete | Riesz space R, there
exists a compact Stonian topological space ), unique up to homeomorphisms, such

that R can be embedded as a [ solid | subspace of Coo(Q2) = {f € R f s
continuous, and {w : |f(w)| = +oo} is nowhere dense in Q} . Moreover, if (ax)rea
is any family such that ay € RV A, and a = supy ay € R (where the supremum
is taken with respect to R ), then a = supy ay with respect to Cx(2), and the
set {w € Q: (supy ay)(w) # supy ax(w)} is meager in Q.

Definition 2.5 A sequence (r,)y, is said to be order-convergent (or (o)-convergent )
to r, if there exists a sequence (p,,), € R, such that p,, | 0 and |r,—7| < pp, Vn € IN,
and we will write (o) — lim,, r, = 7.

As |rp| < |r|+ p1 ¥V n, every (o)-convergent sequence is bounded.
We note that, if R is a o-Dedekind complete Riesz space, (0)-convergence can be
formulated in the following equivalent ways (see also [25]):

Proposition 2.6 A sequence (y,)n, bounded in R, (0)-converges to r if and only
if
r = (o) — limsup r, = (0) — liminf r,,
n n

where
(o) —limsup 7, = inf[sup 7], (o) —liminf r, = suplinf 7).
n n m>n n n m>n
Proposition 2.7 Let R be as above, Q as in Theorem 2.4. A bounded sequence

(ro)n, ™ € R, (0)-converges to r if and only if the set {w € Q : rp(w) 4 r(w)} is
meager in 2.



We recall some fundamental properties of the order convergence (see [25]).

Proposition 2.8 If (r,), (0)-converges to both r and s, then r = s. If (ry)n (0)-
converges to v, (sp)n (0)-converges to s , and o« € IR, then (ry + Sp)n, (rn V
Sn)ns (T ASp)n, (@ 7)) n, ([n])n (0)-converge respectively to r+s, rVs, rAs, ar, |r|.

Definition 2.9 A sequence (ry), is said to be (0)-Cauchy if there exists a
sequence (pn)n € R, such that p, | 0 and |r, — ry| < pp, Yn € IN, and V m > n.

Definition 2.10 A Riesz space R is called (0)-complete if every (o)-Cauchy se-
quence is (0)-convergent.

The following result holds (see [17], [28]):
Proposition 2.11 FEvery o-Dedekind complete Riesz space is (0)-complete.

We note that there are some cases, in which (0)-convergence is not ”generated” by a
topology: for example, L(X, B, 1), where 1 is a o-additive non-atomic positive IR-
valued measure. We recall that, in such spaces, (0)-convergence coincides with
almost everywhere convergence (see also [25]).

3 The monotone integral.

Definition 3.1 Let X be any set, R a Dedekind complete Riesz space, A C P(X)
an algebra. A map u: A — R is said to be mean if u(A) >0, V A€ A, and p(AU
B) = n(A) + u(B), whenever AN B = (). A mean p is countably additive (or o-
additive ) if p(Ny, A,) = inf,, p(A4,), whenever (A,), is a decreasing sequence in
A, such that N, 4, € A.

Given a mapping f : X — IRS_ and a mean g as above, for all A € A and
t € R, set: EZA (or simply FE; 4, when no confusion can arise) = {z € A :

f(z) > t}; E{ (By) = {x € X : f(xz) > t}; and, for every t > 0, let uq f(t) =
HE] 4): ugp(t) = u(t) = p(Er).

Definition 3.2 With the same notations as above, we say that a function f: X —
]Rar is measurable if Etf cA Vte R,

Now, we define a Riemann [Lebesgue|-type integral, for maps, defined in an interval
of the real line, and taking values in a Dedekind complete Riesz space (for similar
integrals existing in the literature, see also [21] and [20]).

Definition 3.3 Let a,b € IR, a < b, and R be as above. We say that a map
g : [a,b] — Ris a step function if there exist n+1 points zg = a < x1 < ... < x, = b,
such that ¢ is constant in each interval of the type |z;—1,z;[ (i =1,...,n). We say
that g is simple if there exist n elements of R, aq,...,a,, and n pairwise disjoint
measurable sets E;, such that g = Y i* | a; xg,. If g is a step [simple] function, we
put ff gt) dt =31 (wi—xi—1)-9(&) Doy |Eil - 9(&)], where & is an arbitrary
point of |z;_1, ;| [F4].



Definition 3.4 Let u : [a,b] — R be a bounded function. We call upper integral
[resp. lower integral | of u the element of R given by

it [ o(t) dt [sup /ab s(t) dt],

veVy Jq SESy
where
V. = {v:wvis astep [simple] function , v(t) > u(t), V¢ € [a,b]}
Sy, = {s:sisastep [simple] function , s(t) < u(t), V¢ € [a,b]}.

We say that u is Riemann | Lebesgue| integrable (or (R) [(L)]-integrable), if its lower
integral coincides with its upper integral, and, in this case, we call integral of u (and
write [ w(t) dt) their common value.

It is easy to check that this integral is well-defined, and is a linear monotone func-
tional, with values in R.
The following result holds:

Proposition 3.5 Every bounded monotone map u : [a,b] — R is Riemann inte-
grable.

Proof: The proof is almost identical to the classical one.

Now, we define an integral for extended real-valued functions, with respect to R-
valued means.

Definition 3.6 Let X, R, u, f: X — ﬁg, u = uy be as above. We say that f is
integrable if there exists in R the quantity

+oo a a
(3.6.1) / u(t) dt = supysq / w(t) dt = (0) — limg_. 1o / u(t) dt,
0 0 0
where the integral in (3.6.1) is intended as in Definition 3.4. If f is integrable,
we indicate the element in (3.6.1) by the symbol / f du. A measurable function
X
f: X — IRis integrable if both fT, f~ are integrable and, in this case, we set

[ gan= [ rran= [ rdn.

Remark 3.7 We can extend Definition 3.6 when p : A — R is any finitely additive
bounded map. A measurable function f is integrable if and only if f is integrable
with respect to u™, i, where for every A € A

pt(A) = Vpca, Bea w(B),
p (A) = —Apca, Bea p(B),

and p = p™ — p~. In this case, we set

Joran= [ fawt [ san.

(see also [7]).



An immediate consequence of Definition 3.6 and monotonicity of y is the follow-
ing:
Proposition 3.8 If f is integrable, then, for each A € A, there exists in R the
quantity

a
sup/ ua,f(t) dt,
a>0 0

which we denote by /f dy.
A

Proposition 3.9 With the same notations as above, if f is integrable, then

/ fdu:/ fxa dp,
A X
VvV Aec A.

Proof: For each fixed t > 0, and « € X, we have [f-xa(z) > t] if and only if [z € A]
and [f(x) > t]. So, ux, sy, = ua,r. Thus, the assertion follows. O

It is easy to check that this integral is a linear R-valued functional, and that,
for every positive integrable map f, [ f du is a mean.

We now list a number of technical results.

Proposition 3.10 If f is integrable, then (0)—lim; 400 p(E:) =0, and hence p(Ex) =
0, where Exo = {z € X : f(z) = 4o00}.

Proof: For every t > 0, we have:

fo tdn_ Sy Sy S

0 < (Ewe) < pu(By) = P < B < X

Taking the infimum, we obtain:

d
0< u(Ey) < imf XTI _ o

>0 t
Proposition 3.11 Let f: X — ZRJ be measurable. Then, f is integrable if and
only if
sup / (fAn) du € R,
n X

and in this case

sup [ (FAm) du= [ 1 dn

Proof: Fix n € IN, and pick ¢t < n : then, f(z) An >t if and only if f(z) > ¢, and
S0

n n +oo
/ up(t) dt = / Upan(t) dt = / Upan(t) dt = / (f An) du.
0 0 0 X
So, the first part of the assertion follows immediately. Moreover, taking the suprema,

we get

sup /X (fAn)du= (o) — lim nu]c(t) dt:/X f dp.0

n n—-+00 0



Proposition 3.12 Let f : X — IR} be measurable and bounded, and set S¢[Vy] =
{g: X —>R:g9g<f gissimple} [{h: X — IR:h>f, hissimple}].
Then, [y f du= SUP,cg, Jx 9du =infrev, [x hdu, and f is integrable.

Proof: Without restriction, it will be enough to prove the part involving S;.
Let L = sup,cx f(x) and, for every fixed n € IN, let s,(0) = u(0), and

L1

sn(t) = u(=—

o )

L(GE-1) L i] (i=1,...,2"). We have:

whenever t €] =5, 557

Put
L

v = {xEX:f(x)>2—n

h
on L
1=

Q
3
I

Then (see also [9]):

L
/gndu Z—MU(" 22— —i

Taking the supremum, we get

L
/ fdu= / u(t) dt = sup / gn dp = (0) — lim / Gn dp.
X 0 n X n X

If g € Sy, then
/ gdué/ [ du,
X X

/fduzsup / gn dp < sup / gdﬂé/ fdp,
X N JX gesy JX X

ne

and so

that is the assertion. O

Proposition 3.13 If f: X — ﬁg 1s integrable, then

fdu—sup / g du .
gESf X

Conversely, if f > 0 is such that the quantity SUPges, Jx g du exists in R, then

f is integrable, and
/ J dp = sup / g dp.
geSY X



Proof. The assertion follows by Propositions 3.11 and 3.12.
The following result is easy too:

Proposition 3.14 Let f: X — E; be an integrable map, g : X — ﬁg measurable,
such that
0<g(z) < flz), Vo eX.

Then g s integrable, and/ g du < / f du.
X X

Now, we note that, if g : X — R is a mean, and C(€2) is as in Theorem 2.4, then
there exists a nowhere dense set ' C €, such that (A)(w) isreal, Vw & Q', ¥V A €
A.

Proposition 3.15 Let R C Coo() a Dedekind complete Riesz space, where Q' is
as above, and set p,(A) = p(A)(w), ¥ w ¢ Q. Assume that f : X — IR is an
integrable map. Then, there exists a meager set set N C ), such that f is integrable
with respect to g, and

/ fduw_</fd,u>  Ywe NV AEA
Proof. Without loss of generality, we can assume that f is nonnegative. Firstly,
suppose that f is bounded. There exists a sequence of simple functions (s;,), such

that s, T f and [s,du 1 [ fdu. So, we have, for every n € IN, up to the
complement of a meager set, depending only on X:

0 < /A Fdpe, — ( / fdu> ‘ ‘ / fduw— [ sudiis] +
+ /A sndji, — < / fdu) ‘ ‘ / Fdp, — snd,uw +
o |(fosuin) @) = ([ rn) )] < /f—snduw+</f—sndu>()

0 < ’/fduw—(/fdu) ‘<hmsup/f—snduw—i—llmsup(/f—sndu)( ) =

= i%f/)(f—snduw+i%f(/)(f—sndu> (w) =0.

Assume now that f is integrable. By the previous step, there exists a meager set
N* such that, Vne IN, Vw & N*, V A€ A, it holds:

/A(f/\n)d,uw: (/Af/\n d,u) (w).

The proof is now analogous to the first part: it will be enough to replace s, with
fAn. O

Now, we prove the following:



Theorem 3.16 Let f : X — ﬁ%g be an integrable map. Then, there exists a
meager set N such that, for every A € A, and for every w & N, </ f d,u) (w) €
A

(n(A) co{f(x) : x € A})(w).

Proof. By Proposition 3.15 and classical results, we have, up to the complement
of a meager set:

([, dmw) = [ f dis € po(d) @l f(@).a € A} =

co{f(z) pu(A),x € A} = (u(A) co{f(z),z € A})(w).0

For the definition of absolute continuity and related remarks, see ([4]).

Proposition 3.17 If f : X — ﬁ%g is integrable, then the integral [ f du is
absolutely continuous, that is, (o) —lim, / f dp = 0 whenever (Ay)y is a sequence
in A, such that (o) — lim,, p(A4,)=0. o

Proof: The assertion is trivial when f is bounded. So, we prove absolute continuity

in the general case. Fix n,k € IN, and pick (Ay)n, with (o) — lim, u(A,) = 0. We
have:

o
IN

/An fdMZ/An (fAk)du+An F—(fAK) du<
/ (f/\k)d/i‘f‘/x f—=(fNE) dp.

n

IN

As (o) —limk/ f—(fANk)du =0, and (o) — lim, / (f Nk) dp = 0 for each
X Ap

k € IN, then there exist a sequence (1) in R, r; | 0, and a double sequence (T;z,k)n,k

in R, r;’k 10 (n— 400,k =1,2,...), such that

og/ fdu<r, . +re, VnkelN.
An ’

It follows that

0<(o —hmsup/ fdu <(( —hmsupr ) tre=rr, YkelN.

n—-—+00 n——+0o00
By arbitrariness of k, we get:
0) — lim sup / fdp=0,
n—-+o0o
and hence

(o) — lim /A fdpu=0.0

n—-4oo

Now, we will prove a Vitali-type theorem for our integral.



Definition 3.18 Let (f, : X — ﬁ)n be a sequence of integrable functions. We say
that (fy)n is uniformly integrable if

sup [ 1ful due R (1)
n X

and

() =tim sup ([ 1l d) =0, &)

k>n

whenever (o) — limg p(Ag) = 0.

Definition 3.19 Under the same hypotheses and notations as above, we say that (fy,),
converges in L' to f if

()=t [ Ifu~ 1l du=0.
noJx
Remark 3.20 It is easy to check that (f,), converges in L' to f if and only if

/Afdu=(0)— lim /Afndu

n—-+o00

uniformly with respect to A € A.

Theorem 3.21 [Vitali ’s theorem|. Under the same notations as above, let (fn)n
be a uniformly integrable sequence of functions, convergent in measure to f. Then, f
is integrable, and (fy)n converges in L' to f.

Conversely, every sequence (f,) of integrable functions, convergent in L' to an
integrable map f, is convergent in measure to f and uniformly integrable.

Proof: To obtain the integrability of |f|, it is enough to prove that
sup Sy = sup {/ edu:0<p<|f|and ¢ is simple} € R, (3)
X

by virtue of Proposition 3.13. Let ¢ € Sy, = Z§:1 ¢j xp;- Fix j =1,2,... )k,
and, for every n € IN, set A, = E‘lf_f"‘. If x € A, N Bj, we have:

p(z) = ¢j < [falz)] + 1,

and hence
[ e dns [ @) dut u(By).
B;nAg B;

As to A, N B;, we have

[ et du< e n(an).
BjNA,



Thus,
[oe@dn < [ 1a@ldit n(By) + e (A,
B B;

J

k
/X plz)dy < /X |fn<x>|du+u<x>+u<An>j§cj-

By convergence in measure, (0) — lim,,—, 4o t(Ay) 2?21 ¢; = 0, and by arbitrariness
of n,

[ edn<sup [ |fuldn+ n(x) € R
X n X

Since the right hand side does not depend on ¢, (3) follows.

So, |f| is integrable. By Proposition 3.14, f* and f~ are integrable, and so is f.
Fix now € > 0 and n € IN. As f, is integrable by hypothesis, then f — f, is too.

We have:

/ o= 1 dyi+ o= 71 du <
{zeX:|fn—fl<e} {zeX:|fn—f|>e}

< [edut ul dut [ |l dp <
X {zeX:|fn—f|>e} {zeX:|frn—fl>e}

el du+ [ En

{zeX:|fn—f|>e}

Jo V= tldu <

< e-u(X)+sup /
k>n  J{z€X:|fn—f|>c}

As (o) —lim,, p({x € X : |f — fu| > €}) = 0, then, by virtue of uniform integrability
of (fr)k, integrability of f and absolute continuity of the integral, we get

(o) — lim [sup

/ il dpe+ [ 1 di = .
n—-+o0o k>n {zEX:|fn—Ff|>€} {zeX:|fn—f|>c}

So, there exists a sequence (ry,), in R, 7, | 0, such that
0= [ o= fldn<e p(X) +ra, ¥nE DN,
X
Thus, we obtain:

0 < (o) —timsup [ |fu—fldu< e pu(X)+ (o)~ lmsup r, =
X

n—-+o00 n—-+o0o
= e¢-pu(X)+ inf r,=¢e-pu(X).
(X)) [k u(X)

By arbitrariness of € > 0, we get

()= lim [ |fu=fldu=0.
X

n—-+oo

Conversely, suppose that (f,), converges in L' to f.

10



Fix € > 0, and set
Elf’f“ ={reX:|fulr)— f(x)|>¢c}, VnelN.

Then,
L \fn=fldp Jgis=sm1 | |
€ €

and hence (o) — lim, H(Elfff’”) =0.

Now, we prove uniform integrability. By convergence in L', it follows immediately
that sup, [y |fx| dp € R.

Let (An)n be a sequence in A, such that (o) — lim,, p(A4,)=0.Fixn € IN. For
every k > n, we have:

/An ’fk’dMS/An !fk—f!dqu/An |fl du <

< [ -1 du+/An £ d.

By convergence in L!, there exists a sequence (73); in R, 74 | 0, such that

[ 1= fldn <<,
X

Thus,
swp [ Al du <+ [ 1] dp
An An

k>n

So,

0 < (o) —limsup sup /A | fr] du < irﬁf rn + (0) — limsup /A |f] du =0,

n—+oo  k>n n—+o0o

and hence
(o)— lim sup / | fx| dp = 0.0
An

n—-+4o0o k>n

A consequence of Vitali’ s theorem is the following:

Theorem 3.22 [Lebesgue dominated convergence theorem | Let (fn)n, fn be a
sequence of measurable functions, and suppose that there exists an integrable map h,
such that |fn(x)| < |h(x)| for all n € IN and almost everywhere with respect to x.
Furthermore, assume that (fn)n converges in measure to f. Then, for every n €
IN, f, is integrable and (fy)n converges in L' to f.

11



Proof: Without loss of generality, we suppose that
|fn(z)| < |h(z)], Vne N, VzelX.

By integrability of |h| and Proposition 3.14, f, is integrable for every n € IN; more-
over, by virtue of absolute continuity of the integral of A, the hypotheses of Theorem
3.21 hold. So, the assertion follows. O

As a consequence of Theorem 3.22, we prove the following theorem, that is a

sufficient condition for the convergence in L', inspired by a well-known result of
Scheffé ’s ([23]):

Theorem 3.23 With the same notations as above, let (fn)n : X — Ear be a se-
quence of integrable functions, convergent in measure to a monnegative integrable
mapping f. Assume that [y fn dp (0)-converges to [y f dup. Then, (fn)n con-
verges in L' to f.

Proof: Let h,(z) = fo(z) — f(x), V x € X. Thus,
0 < [hn(x)]” < f(x), V.

Let Hy(z) = [hn(x)]”, V x. Then, f, H, are integrable for every n, and (Hp)y
converges in measure to 0. By Theorem 3.22;, we have:

0= ()= tim [ [h@] du

and so
(0) — lim /X [hn ()] dp = (0) — lim /X hy, dp =0,

by hypothesis.
Finally, we get:

)= tim [ lhaldi = ()= lim [ ()] dut
+ (o)~ lim /G o (2)]” du = 0. O

We now state a version of the monotone convergence theorem.

Theorem 3.24 With the same notations as above, let (fy,)n be an increasing se-
quence of non negative integrable maps, convergent in measure to an integrable func-

tion f. Then,
| fdn=~tm [ dn.
b'e nooJx

and therefore f, — f in L.

Proof: It is an immediate consequence of Vitali ’s Theorem.

12



4 Countable additive case.

If p is countably additive, convergence almost everywhere implies convergence in
measure; this can be proved along classical lines, hence we simply state the results.
So both Levi’s theorem and Fatou’s lemma hold.

Proposition 4.1 Let R be a Dedekind complete Riesz space, A C P(X) a o-
algebra, and assume that p: A — R is a o-additive mean. Set

Al ={z e X :|folx)— f(z)| >}, Ve>0.

Then, fy converges almost everywhere to f if and only if p(limsup,, A5) =0, Ve >
0.

It is easy to prove the following;:

Proposition 4.2 Let R, A and p be as above, and assume that p is o-additive.
Then, for each sequence (Ay) in A, one has:

u(lirr}linf Ap) < limninf w(Ay) <limsup p(A,) < p(limsup A,).

A straightforward consequence of Proposition 4.2 is the following:

Theorem 4.3 Let f,, f and p be as above. If (f,) converges to f almost every-
where, then (f,) converges to f in measure.

From Theorems 3.24 and 4.3, and by proceeding as in the classical case, it follows:

Theorem 4.4 With the same notations and hypotheses as above, let (fn)n be an
increasing sequence of nonnegative measurable maps. Then f(x) = lim,, fn(z) is
integrable if and only if lim, [y fn dp € R, and in this case

/deu:(o)—li}ln/xfndu.

A consequence of Beppo Levi ’s Theorem is the following version of Fatou’s
Lemma:

Theorem 4.5 Let X, R, p be as above, (f,)n a sequence of nonnegative integrable
maps, f(x) = liminf, fu(x), ¥V o € X. If liminf, [y f, du € R, then f is
integrable, and liminf,, [y f, du> [y f dp.

13



5 Radon-Nikodym Theorem.

In this section, we give a Greco-type condition for the existence of a Radon-Nikodym
derivative for the monotone integral, introduced in the previous section (see [14]) .
We show that the Radon-Nikodym problem, in general, has no solutions. Indeed,
there exist two IR%-valued o-additive means p and v, with v < p, such that there
is no function f : X = {0,1} — IR such that v = [ f dp.

Let X = {0,1}, A = P(X), R = IR? (endowed with componentwise ordering),
p,v: P(X) — IR? defined by setting

p({0}) = (1,0), p({1}) = (0,1), »({0}) = (0, 1), »({1}) = (1,0).

It is easy to check that p and v are o-additive, v is absolutely continuous w. r. to p
and p is absolutely continuous w. r. to v. However, there is no function f : X — IR,
such that v(A) = [, f dp, VA€ P(X): otherwise, we have:

(1,0) =v({1}) = /{1} fdp= f(1) p({1}) = (0, f(1)),

contradiction.
Furthermore, it is easy to see that, for every r > 0, there exists no Hahn decompo-
sition for the map v —r p.

Now we introduce two preliminary lemmas.

Proposition 5.1 Let p,v : A — R be two means with v < p. If there exists an
‘ —+
A-measurable function f: X — IR, such that, for every E € A:

W) = [ rdp

then, for every r > 0, the set A, = {x € X : f(x) > r} satisfies:
5.1.1) v(E) > ru(E) for every E € A, N A;

5.1.2) v(E) < ru(E) for every E € ASNcalA;

5.1.3) (0) — lim, 400 v(4,) = 0.

Proof: A, € A for every r > 0 since f is measurable; moreover, for every r > 0
and for every E € A, N A, F € ASN A, we have:

W(E) = [ fan= [ rdu=ru(E)
W(F) = [ tdp < [ rdu=ru(p)

This proves (5.1.1) and (5.1.2).
(5.1.3) is a consequence of (5.1.1): indeed, (5.1.1) yields

, Vr>0.
r T

So, (0) — lim, 40 p(Ay) =0, and hence (0) — lim, 4o v(A4,) =0. O
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Proposition 5.2 Let p,v: A — R be two means with v < p. Let D = {2%,1',71 €
IN}. If there exists a decreasing family (Ay)rep, such that Ay = X and satisfying
(5.1.1) and (5.1.2), then the function f : X — [0,+oc], defined by f(x) = sup{r €
D :x € A}, is integrable and

V(E):/Efdu, VEeA

Proof fis A—measurable, since, V¢t >0, {z € X : f(x) >t} = Upepr>tAr. Let
fn = 2n S " XA & for every n € IN. Then

1
fAn=fN gy S fa< ] Y.

By construction, for every E € A,

n2" n2"—1 k

| e = o Zu 1) = Y o [#Ax OE) = p(A 0 E)| +nu(4, 0 E) <
k=1
n2™—1
< Y [MAL N E) = v(Awa 0 B)| +nv(A, N E) < v(E).

k=1 > "

So,
sup/ frdu <v(X)eR
n X

and thus

S%p/)( (fAn)duSS%p/X (fn+1) dp < v(X) + p(X).

So, by Proposition 3.11, f is integrable, and hence, by Proposition 3.8, f - xg is
integrable, V ¥ € A. Thus

o) =tim [ (Famydu— [ (Fng) dil=(0)=tm [ (Fan)dp= [ 1

0)—117?1/Efndu:[Efdu

/Efd,ugz/(E), VEe€A

and therefore

and

On the other hand,

k+1
/fnd,u = Z 2_; [M(AQLHE)—M(A%OE)}—{—n,u(AnﬁE)+
1 n2™—1
> [M(A%HE)—M(A%OE)} >
1
> V(A NE) = v(ANE) = oo (A ) — u(An N E))



Taking the (0)-limits as n — oo, we obtain

/ fdp=v(E). O
E
A consequence of Proposition 5.1 and 5.2 is the following Radon-Nikodym Theorem.

Theorem 5.3 Let p,v: A — R be two means with v < u. Then the following are
equivalent:

(5.3.a) there exists an A-measurable function f : X — Rf such that, for every
E e A:

W) = [ fdu

(5.3.b) there exists a family (Ay)r>o of measurable sets such that for every r > 0:
(5.3.b.1) v(E) > ru(E) for every E € A, N A;
(5.3.b.2) v(E) <ru(E) for every E € AS N A.

The following is a different formulation of 5.3.

Theorem 5.4 Let u,v: A — R be two means with v < u. Then the following are
equivalent:

(5.4.a) there exists a A-measurable function f : X — ,]ZTE(J)F such that, for every
E e A:

v(E) = / fdy;
E
(5.4.b) for every r > 0 the measure v — ru admits a Hahn decomposition, namely
there exist two disjoint measurable sets (By,Cy) such that, V E € A :
(v—r)H(E) = (v—ru)(ENB,)
v—rp) (E) = (w—rp)(ENC)
Proof: (5.4.a) = (5.4.b)

By Theorem 5.3, there exists a family (A4,),~¢ of measurable sets such that, for
every r > (:

(5.3.b.1) v(E) > ru(E) for every E € A, N A;
(5.3.b.2) v(F) <ru(E) for every E € ASN A
Set B, = A,,C, = AS. For every E € A, N A, we have:
(=) (B) = (v =) (BN A+ (v — ) (B0 AS) =
= - (ENA) = (v — (BN A)

from (5.3.b.1), since (v —ru)(F) <0, VF € ENASNA.
So we obtain, for every E € A,

(v —rp)"(E) = (v — rp)(EN By).
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Analogously, for each E € A,

(v —rp)~(E) = (v —ru)(ENCy).

(5.4.b) = (5.4.a)
It is easy to check that, if (5.4.b) holds, then (5.3.b.1.) and (5.3.b.2.) are satisfied.
The assertion follows by Proposition 5.2. O
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