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Abstract

A monotone integral is given for scalar function, with respect to Riesz space val-
ues means, and also a necessary and sufficient condition to obtain a Radon-Nikodym
density for two means.
A.M.S. Classification: 28A70.

1 Introduction.

Integrals like Kurzweil-Stieltjes, Riemann sums and Bochner have been studied in
vector lattices by Duchoň, Riečan and Vrábelová, ([11], [21], [22], Wright ([26], [27]),
McGill ([19]), Šipoš ([24]), Maličký ([18]), Cristescu ([8]), Haluška ([15]), Boccuto
([3], [4]), and so on.

In this paper we extend to such spaces the monotone integral, given by Cho-
quet in 1953 ([6]), and developped by De Giorgi-Letta ([9]), Greco ([13]), Brooks-
Martellotti ([5]), and others ([10], [12], [16], etc.).

Given a mean µ : A → R and a measurable function f : X → ĨR
+

0 , we say that
f is integrable (in the monotone sense) if there exists in R the limit

(o)− lim
a→+∞

∫ a

0
µ({x ∈ X : f(x) > t}) dt.

For this integral we obtain some elementary properties and we give some Vitali-type
theorems.
We note that in general this integral is different from the one introduced in [5] for
Banach spaces.
Finally, we prove a version of Radon-Nikodym-type theorems for the introduced

∗Lavoro svolto nell’ambito dello G.N.A.F.A. del C.N.R.
†Department of Mathematics via Vanvitelli,1 06123 PERUGIA (ITALY)

E-mail: boccuto@dipmat.unipg.it, matears1@unipg.it

1



integral (see also [14]).

Our thanks to Prof. D. Candeloro and A. Martellotti for their helpful sugges-
tions.

2 Preliminaries.

We begin with some definitions.

Definition 2.1 A Riesz space R is called Archimedean if the following property
holds:

2.1.1 For every choice of a, b ∈ R, if na ≤ b for all n ∈ IN, then a ≤ 0.

Definition 2.2 A Riesz space R is said to be Dedekind complete [resp. σ-Dedekind
complete] if every nonempty [countable] subset of R, bounded from above, has supre-
mum in R.

The following results are well-known (see [1], [2]).

Proposition 2.3 Every σ-Dedekind complete Riesz space is Archimedean.

Theorem 2.4 Given an Archimedean [ Dedekind complete ] Riesz space R, there
exists a compact Stonian topological space Ω, unique up to homeomorphisms, such
that R can be embedded as a [ solid ] subspace of C∞(Ω) = {f ∈ ĨR

Ω
: f is

continuous, and {ω : |f(ω)| = +∞} is nowhere dense in Ω} . Moreover, if (aλ)λ∈Λ

is any family such that aλ ∈ R ∀ λ, and a = supλ aλ ∈ R (where the supremum
is taken with respect to R ), then a = supλ aλ with respect to C∞(Ω), and the
set {ω ∈ Ω : (supλ aλ)(ω) 6= supλ aλ(ω)} is meager in Ω.

Definition 2.5 A sequence (rn)n is said to be order-convergent (or (o)-convergent )
to r, if there exists a sequence (pn)n ∈ R, such that pn ↓ 0 and |rn−r| ≤ pn, ∀ n ∈ IN,
and we will write (o)− limn rn = r.

As |rn| ≤ |r|+ p1 ∀ n, every (o)-convergent sequence is bounded.
We note that, if R is a σ-Dedekind complete Riesz space, (o)-convergence can be
formulated in the following equivalent ways (see also [25]):

Proposition 2.6 A sequence (rn)n, bounded in R, (o)-converges to r if and only
if

r = (o)− lim sup
n

rn = (o)− lim inf
n

rn,

where

(o)− lim sup
n

rn = inf
n

[ sup
m≥n

rm], (o)− lim inf
n

rn = sup
n

[ inf
m≥n

rm].

Proposition 2.7 Let R be as above, Ω as in Theorem 2.4. A bounded sequence
(rn)n, rn ∈ R, (o)-converges to r if and only if the set {ω ∈ Ω : rn(ω) 6→ r(ω)} is
meager in Ω.
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We recall some fundamental properties of the order convergence (see [25]).

Proposition 2.8 If (rn)n (o)-converges to both r and s, then r ≡ s. If (rn)n (o)-
converges to r, (sn)n (o)-converges to s , and α ∈ IR, then (rn + sn)n, (rn ∨
sn)n, (rn∧sn)n, (α rn)n, (|rn|)n (o)-converge respectively to r+s, r∨s, r∧s, α r, |r|.

Definition 2.9 A sequence (rn)n is said to be (o)-Cauchy if there exists a
sequence (pn)n ∈ R, such that pn ↓ 0 and |rn − rm| ≤ pn, ∀ n ∈ IN, and ∀ m ≥ n.

Definition 2.10 A Riesz space R is called (o)-complete if every (o)-Cauchy se-
quence is (o)-convergent.

The following result holds (see [17], [28]):

Proposition 2.11 Every σ-Dedekind complete Riesz space is (o)-complete.

We note that there are some cases, in which (o)-convergence is not ”generated” by a
topology: for example, L0(X,B, µ), where µ is a σ-additive non-atomic positive ĨR-
valued measure. We recall that, in such spaces, (o)-convergence coincides with
almost everywhere convergence (see also [25]).

3 The monotone integral.

Definition 3.1 Let X be any set, R a Dedekind complete Riesz space, A ⊂ P(X)
an algebra. A map µ : A → R is said to be mean if µ(A) ≥ 0, ∀ A ∈ A, and µ(A∪
B) = µ(A) + µ(B), whenever A ∩ B = ∅. A mean µ is countably additive (or σ-
additive ) if µ(∩n An) = infn µ(An), whenever (An)n is a decreasing sequence in
A, such that ∩n An ∈ A.

Given a mapping f : X → ĨR
+
0 and a mean µ as above, for all A ∈ A and

t ∈ IR+
0 , set: Eft,A (or simply Et,A, when no confusion can arise) ≡ {x ∈ A :

f(x) > t}; Ef
t (Et) ≡ {x ∈ X : f(x) > t}; and, for every t > 0, let uA,f (t) ≡

µ(Eft,A); uf (t) = u(t) ≡ µ(Et).

Definition 3.2 With the same notations as above, we say that a function f : X →
ĨR

+
0 is measurable if Eft ∈ A, ∀ t ∈ IR+.

Now, we define a Riemann [Lebesgue]-type integral, for maps, defined in an interval
of the real line, and taking values in a Dedekind complete Riesz space (for similar
integrals existing in the literature, see also [21] and [20]).

Definition 3.3 Let a, b ∈ IR, a < b, and R be as above. We say that a map
g : [a, b]→ R is a step function if there exist n+1 points x0 ≡ a < x1 < . . . < xn ≡ b,
such that g is constant in each interval of the type ]xi−1, xi[ (i = 1, . . . , n). We say
that g is simple if there exist n elements of R, a1, . . . , an, and n pairwise disjoint
measurable sets Ei, such that g =

∑n
i=1 ai χEi . If g is a step [simple] function, we

put
∫ b
a g(t) dt ≡

∑n
i=1 (xi−xi−1) · g(ξi) [

∑n
i=1 |Ei| · g(ξi)], where ξi is an arbitrary

point of ]xi−1, xi[ [Ei].
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Definition 3.4 Let u : [a, b] → R be a bounded function. We call upper integral
[resp. lower integral ] of u the element of R given by

inf
v∈Vu

∫ b

a
v(t) dt [ sup

s∈Su

∫ b

a
s(t) dt],

where

Vu ≡ {v : v is a step [simple] function , v(t) ≥ u(t), ∀ t ∈ [a, b]}
Su ≡ {s : s is a step [simple] function , s(t) ≤ u(t), ∀ t ∈ [a, b]}.

We say that u is Riemann [ Lebesgue] integrable (or (R) [(L)]-integrable), if its lower
integral coincides with its upper integral, and, in this case, we call integral of u (and
write

∫ b
a u(t) dt) their common value.

It is easy to check that this integral is well-defined, and is a linear monotone func-
tional, with values in R.
The following result holds:

Proposition 3.5 Every bounded monotone map u : [a, b] → R is Riemann inte-
grable.

Proof: The proof is almost identical to the classical one.

Now, we define an integral for extended real-valued functions, with respect to R-
valued means.

Definition 3.6 Let X, R, µ, f : X → ĨR
+

0 , u = uf be as above. We say that f is
integrable if there exists in R the quantity

(3.6.1)
∫ +∞

0
u(t) dt ≡ supa>0

∫ a

0
u(t) dt = (o)− lima→+∞

∫ a

0
u(t) dt,

where the integral in (3.6.1) is intended as in Definition 3.4. If f is integrable,

we indicate the element in (3.6.1) by the symbol
∫
X
f dµ. A measurable function

f : X → IR is integrable if both f+, f− are integrable and, in this case, we set∫
X
fdµ =

∫
X
f+dµ−

∫
X
f−dµ.

Remark 3.7 We can extend Definition 3.6 when µ : A → R is any finitely additive
bounded map. A measurable function f is integrable if and only if f is integrable
with respect to µ+, µ−, where for every A ∈ A

µ+(A) ≡ ∨B⊂A, B∈A µ(B),
µ−(A) ≡ − ∧B⊂A, B∈A µ(B),

and µ = µ+ − µ−. In this case, we set∫
X
f dµ ≡

∫
X
f dµ+ −

∫
X
f dµ−.

(see also [7]).
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An immediate consequence of Definition 3.6 and monotonicity of µ is the follow-
ing:

Proposition 3.8 If f is integrable, then, for each A ∈ A, there exists in R the
quantity

sup
a>0

∫ a

0
uA,f (t) dt,

which we denote by
∫
A
f dµ.

Proposition 3.9 With the same notations as above, if f is integrable, then∫
A
f dµ =

∫
X
f · χA dµ,

∀ A ∈ A.

Proof: For each fixed t > 0, and x ∈ X, we have [f ·χA(x) > t] if and only if [x ∈ A]
and [f(x) > t]. So, uX,f ·χA

≡ uA,f . Thus, the assertion follows. 2
It is easy to check that this integral is a linear R-valued functional, and that,

for every positive integrable map f,
∫
· f dµ is a mean.

We now list a number of technical results.

Proposition 3.10 If f is integrable, then (o)−limt→+∞ µ(Et) = 0, and hence µ(E∞) =
0, where E∞ ≡ {x ∈ X : f(x) = +∞}.

Proof: For every t > 0, we have:

0 ≤ µ(E∞) ≤ µ(Et) =

∫
Et

t dµ

t
≤
∫
Et

f dµ

t
≤
∫
X fdµ

t
.

Taking the infimum, we obtain:

0 ≤ µ(Et) ≤ inf
t>0

∫
X fdµ

t
= 0.2

Proposition 3.11 Let f : X → ĨR
+
0 be measurable. Then, f is integrable if and

only if

sup
n

∫
X

(f ∧ n) dµ ∈ R,

and in this case
sup
n

∫
X

(f ∧ n) dµ =
∫
X
f dµ.

Proof: Fix n ∈ IN, and pick t < n : then, f(x) ∧ n > t if and only if f(x) > t, and
so ∫ n

0
uf (t) dt =

∫ n

0
uf∧n(t) dt =

∫ +∞

0
uf∧n(t) dt =

∫
X

(f ∧ n) dµ.

So, the first part of the assertion follows immediately. Moreover, taking the suprema,
we get

sup
n

∫
X

(f ∧ n) dµ = (o)− lim
n→+∞

∫ n

0
uf (t) dt =

∫
X
f dµ.2
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Proposition 3.12 Let f : X → IR+
0 be measurable and bounded, and set Sf [Vf ] ≡

{g : X → IR : g ≤ f, g is simple } [{h : X → IR : h ≥ f, h is simple }].
Then,

∫
X f dµ = supg∈Sf

∫
X g dµ = infh∈Vf

∫
X h dµ, and f is integrable.

Proof: Without restriction, it will be enough to prove the part involving Sf .
Let L = supx∈X f(x) and, for every fixed n ∈ IN, let sn(0) ≡ u(0), and

sn(t) ≡ u(
L i

2n
),

whenever t ∈]L(i−1)
2n , L i

2n ] (i = 1, . . . , 2n). We have:

∫ L

0
sn(t) dt =

2n∑
i=1

L

2n
u(
L

2n
i).

Put

U
(n)
i ≡ {x ∈ X : f(x) >

L i

2n
};

gn ≡
2n∑
i=1

L

2n
χ
U

(n)
i

, ∀ n ∈ IN, i = 1, 2, . . . , 2n.

Then (see also [9]):

∫
X
gn dµ =

2n∑
i=1

L

2n
µ(U (n)

i ) =
2n∑
i=1

L

2n
u(
L

2n
i).

Taking the supremum, we get∫
X
f dµ =

∫ L

0
u(t) dt = sup

n

∫
X
gn dµ = (o)− lim

n

∫
X
gn dµ.

If g ∈ Sf , then ∫
X
g dµ ≤

∫
X
f dµ,

and so ∫
X
f dµ = sup

n∈IN

∫
X
gn dµ ≤ sup

g∈Sf

∫
X
g dµ ≤

∫
X
f dµ,

that is the assertion. 2

Proposition 3.13 If f : X → ĨR
+

0 is integrable, then∫
X
f dµ = sup

g∈Sf

∫
X
g dµ .

Conversely, if f ≥ 0 is such that the quantity supg∈Sf

∫
X g dµ exists in R, then

f is integrable, and ∫
X
f dµ = sup

g∈Sf

∫
X
g dµ.
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Proof. The assertion follows by Propositions 3.11 and 3.12.

The following result is easy too:

Proposition 3.14 Let f : X → ĨR
+

0 be an integrable map, g : X → ĨR
+

0 measurable,
such that

0 ≤ g(x) ≤ f(x), ∀ x ∈ X.

Then g is integrable, and
∫
X
g dµ ≤

∫
X
f dµ.

Now, we note that, if µ : X → R is a mean, and C∞(Ω) is as in Theorem 2.4, then
there exists a nowhere dense set Ω

′ ⊂ Ω, such that µ(A)(ω) is real, ∀ ω 6∈ Ω
′
, ∀ A ∈

A.

Proposition 3.15 Let R ⊂ C∞(Ω) a Dedekind complete Riesz space, where Ω
′

is
as above, and set µω(A) ≡ µ(A)(ω), ∀ ω 6∈ Ω

′
. Assume that f : X → IR is an

integrable map. Then, there exists a meager set set N ⊂ Ω, such that f is integrable
with respect to µω, and∫

A
f dµω =

(∫
A
f dµ

)
(ω), ∀ ω ∈ N c, ∀ A ∈ A.

Proof. Without loss of generality, we can assume that f is nonnegative. Firstly,
suppose that f is bounded. There exists a sequence of simple functions (sn)n such
that sn ↑ f and

∫
sndµ ↑

∫
fdµ. So, we have, for every n ∈ IN , up to the

complement of a meager set, depending only on X:

0 ≤
∣∣∣∣∫
A
fdµω −

(∫
A
fdµ

)
(ω)
∣∣∣∣ ≤ ∣∣∣∣∫

A
fdµω −

∫
A
sndµω

∣∣∣∣+
+

∣∣∣∣∫
A
sndµω −

(∫
A
fdµ

)
(ω)
∣∣∣∣ =

∣∣∣∣∫
A
fdµω −

∫
A
sndµω

∣∣∣∣+
+

∣∣∣∣(∫
A
sndµ

)
(ω)−

(∫
A
fdµ

)
(ω)
∣∣∣∣ ≤ ∫

X
f − sndµω +

(∫
X
f − sndµ

)
(ω)

Then:

0 ≤
∣∣∣∣∫
A
fdµω −

(∫
A
fdµ

)
(ω)
∣∣∣∣ ≤ lim sup

n

∫
X
f − sndµω + lim sup

n

(∫
X
f − sndµ

)
(ω) =

= inf
n

∫
X
f − sndµω + inf

n

(∫
X
f − sndµ

)
(ω) = 0.

Assume now that f is integrable. By the previous step, there exists a meager set
N∗ such that, ∀ n ∈ IN, ∀ ω 6∈ N∗, ∀ A ∈ A, it holds:∫

A
(f ∧ n)dµω =

(∫
A
f ∧ n dµ

)
(ω).

The proof is now analogous to the first part: it will be enough to replace sn with
f ∧ n. 2

Now, we prove the following:
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Theorem 3.16 Let f : X → ĨR
+
0 be an integrable map. Then, there exists a

meager set N such that, for every A ∈ A, and for every ω 6∈ N,
(∫

A
f dµ

)
(ω) ∈

(µ(A) co{f(x) : x ∈ A})(ω).

Proof. By Proposition 3.15 and classical results, we have, up to the complement
of a meager set:

(
∫
A
f dµ)(ω) =

∫
A
f dµω ∈ µω(A) co{f(x), x ∈ A} =

co{f(x) µω(A), x ∈ A} = (µ(A) co{f(x), x ∈ A})(ω).2

For the definition of absolute continuity and related remarks, see ([4]).

Proposition 3.17 If f : X → ĨR
+
0 is integrable, then the integral

∫
· f dµ is

absolutely continuous, that is, (o)− limn

∫
An

f dµ = 0 whenever (An)n is a sequence

in A, such that (o)− limn µ(An) = 0.

Proof: The assertion is trivial when f is bounded. So, we prove absolute continuity
in the general case. Fix n, k ∈ IN, and pick (An)n, with (o)− limn µ(An) = 0. We
have:

0 ≤
∫
An

f dµ =
∫
An

(f ∧ k) dµ+
∫
An

f − (f ∧ k) dµ ≤

≤
∫
An

(f ∧ k) dµ+
∫
X
f − (f ∧ k) dµ.

As (o) − limk

∫
X
f − (f ∧ k) dµ = 0, and (o) − limn

∫
An

(f ∧ k) dµ = 0 for each

k ∈ IN, then there exist a sequence (rk)k in R, rk ↓ 0, and a double sequence (r
′
n,k)n,k

in R, r
′
n,k ↓ 0 (n→ +∞, k = 1, 2, . . .), such that

0 ≤
∫
An

f dµ ≤ r′n,k + rk, ∀ n, k ∈ IN.

It follows that

0 ≤ (o)− lim sup
n→+∞

∫
An

f dµ ≤ ((o)− lim sup
n→+∞

r
′
n,k) + rk = rk, ∀ k ∈ IN.

By arbitrariness of k, we get:

(o)− lim sup
n→+∞

∫
An

f dµ = 0,

and hence
(o)− lim

n→+∞

∫
An

f dµ = 0. 2

Now, we will prove a Vitali-type theorem for our integral.
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Definition 3.18 Let (fn : X → ĨR)n be a sequence of integrable functions. We say
that (fn)n is uniformly integrable if

sup
n

∫
X
|fn| dµ ∈ R, (1)

and

(o)− lim
n

sup
k≥n

(∫
An

|fk| dµ
)

= 0, (2)

whenever (o)− limk µ(Ak) = 0.

Definition 3.19 Under the same hypotheses and notations as above, we say that (fn)n
converges in L1 to f if

(o)− lim
n

∫
X
|fn − f | dµ = 0.

Remark 3.20 It is easy to check that (fn)n converges in L1 to f if and only if∫
A
f dµ = (o)− lim

n→+∞

∫
A
fn dµ

uniformly with respect to A ∈ A.

Theorem 3.21 [Vitali ’s theorem]. Under the same notations as above, let (fn)n
be a uniformly integrable sequence of functions, convergent in measure to f. Then, f
is integrable, and (fn)n converges in L1 to f.
Conversely, every sequence (fn) of integrable functions, convergent in L1 to an
integrable map f, is convergent in measure to f and uniformly integrable.

Proof: To obtain the integrability of |f |, it is enough to prove that

sup S|f | ≡ sup
{∫

X
ϕ dµ : 0 ≤ ϕ ≤ |f | and ϕ is simple

}
∈ R, (3)

by virtue of Proposition 3.13. Let ϕ ∈ S|f |, ϕ =
∑k
j=1 cj χBj . Fix j = 1, 2, . . . , k,

and, for every n ∈ IN, set An ≡ E|f−fn|
1 . If x ∈ Anc ∩Bj , we have:

ϕ(x) = cj ≤ |fn(x)|+ 1,

and hence ∫
Bj∩Ac

n

ϕ(x) dµ ≤
∫
Bj

|fn(x)| dµ+ µ(Bj).

As to An ∩Bj , we have ∫
Bj∩An

ϕ(x) dµ ≤ cj µ(An).
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Thus, ∫
Bj

ϕ(x) dµ ≤
∫
Bj

|fn(x)|dµ+ µ(Bj) + cj µ(An),

∫
X
ϕ(x)dµ ≤

∫
X
|fn(x)|dµ+ µ(X) + µ(An)

k∑
j=1

cj .

By convergence in measure, (o)− limn→+∞ µ(An)
∑k
j=1 cj = 0, and by arbitrariness

of n, ∫
X
ϕdµ ≤ sup

n

∫
X
|fn|dµ+ µ(X) ∈ R.

Since the right hand side does not depend on ϕ, (3) follows.
So, |f | is integrable. By Proposition 3.14, f+ and f− are integrable, and so is f .

Fix now ε > 0 and n ∈ IN . As fn is integrable by hypothesis, then f − fn is too.
We have:∫
X
|fn − f | dµ ≤

∫
{x∈X:|fn−f |≤ε}

|fn − f | dµ+
∫
{x∈X:|fn−f |>ε}

|fn − f | dµ ≤

≤
∫
X
ε dµ+

∫
{x∈X:|fn−f |>ε}

|fn| dµ+
∫
{x∈X:|fn−f |>ε}

|f | dµ ≤

≤ ε · µ(X) + sup
k≥n

∫
{x∈X:|fn−f |>ε}

|fk| dµ+
∫
{x∈X:|fn−f |>ε}

|f | dµ.

As (o)− limn µ({x ∈ X : |f−fn| > ε}) = 0, then, by virtue of uniform integrability
of (fk)k, integrability of f and absolute continuity of the integral, we get

(o)− lim
n→+∞

[sup
k≥n

∫
{x∈X:|fn−f |>ε}

|fk| dµ+
∫
{x∈X:|fn−f |>ε}

|f | dµ] = 0.

So, there exists a sequence (rn)n in R, rn ↓ 0, such that

0 ≤
∫
X
|fn − f | dµ ≤ ε · µ(X) + rn, ∀ n ∈ IN.

Thus, we obtain:

0 ≤ (o)− lim sup
n→+∞

∫
X
|fn − f | dµ ≤ ε · µ(X) + (o)− lim sup

n→+∞
rn =

= ε · µ(X) + inf
n∈IN

rn = ε · µ(X).

By arbitrariness of ε > 0, we get

(o)− lim
n→+∞

∫
X
|fn − f | dµ = 0.

Conversely, suppose that (fn)n converges in L1 to f.
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Fix ε > 0, and set

E|f−fn|
ε ≡ {x ∈ X : |fn(x)− f(x)| > ε}, ∀ n ∈ IN.

Then, ∫
X |fn − f | dµ

ε
≥

∫
E
|f−fn|
ε

|fn − f | dµ
ε

≥ µ(E|f−fn|
ε ) ≥ 0,

and hence (o)− limn µ(E|f−fn|
ε ) = 0.

Now, we prove uniform integrability. By convergence in L1, it follows immediately
that supk

∫
X |fk| dµ ∈ R.

Let (An)n be a sequence in A, such that (o)− limn µ(An) = 0. Fix n ∈ IN. For
every k ≥ n, we have:∫

An

|fk| dµ ≤
∫
An

|fk − f | dµ+
∫
An

|f | dµ ≤

≤
∫
X
|fk − f | dµ+

∫
An

|f | dµ.

By convergence in L1, there exists a sequence (rk)k in R, rk ↓ 0, such that∫
X
|fk − f | dµ ≤ rk ≤ rn.

Thus,

sup
k≥n

∫
An

|fk| dµ ≤ rn +
∫
An

|f | dµ.

So,

0 ≤ (o)− lim sup
n→+∞

sup
k≥n

∫
An

|fk| dµ ≤ inf
n

rn + (o)− lim sup
n→+∞

∫
An

|f | dµ = 0,

and hence
(o)− lim

n→+∞
sup
k≥n

∫
An

|fk| dµ = 0.2

A consequence of Vitali’ s theorem is the following:

Theorem 3.22 [Lebesgue dominated convergence theorem ] Let (fn)n, fn be a
sequence of measurable functions, and suppose that there exists an integrable map h,
such that |fn(x)| ≤ |h(x)| for all n ∈ IN and almost everywhere with respect to x.
Furthermore, assume that (fn)n converges in measure to f . Then, for every n ∈
IN, fn is integrable and (fn)n converges in L1 to f .

11



Proof: Without loss of generality, we suppose that

|fn(x)| ≤ |h(x)|, ∀ n ∈ IN, ∀ x ∈ X.

By integrability of |h| and Proposition 3.14, fn is integrable for every n ∈ IN ; more-
over, by virtue of absolute continuity of the integral of h, the hypotheses of Theorem
3.21 hold. So, the assertion follows. 2

As a consequence of Theorem 3.22, we prove the following theorem, that is a
sufficient condition for the convergence in L1, inspired by a well-known result of
Scheffé ’s ([23]):

Theorem 3.23 With the same notations as above, let (fn)n : X → ĨR
+

0 be a se-
quence of integrable functions, convergent in measure to a nonnegative integrable
mapping f. Assume that

∫
X fn dµ (o)-converges to

∫
X f dµ. Then, (fn)n con-

verges in L1 to f.

Proof: Let hn(x) = fn(x)− f(x), ∀ x ∈ X. Thus,

0 ≤ [hn(x)]− ≤ f(x), ∀ x.

Let Hn(x) = [hn(x)]−, ∀ x. Then, f, Hn are integrable for every n, and (Hn)n
converges in measure to 0. By Theorem 3.22, we have:

0 = (o)− lim
n

∫
X

[hn(x)]− dµ

and so
(o)− lim

n

∫
X

[hn(x)]+ dµ = (o)− lim
n

∫
X
hn dµ = 0,

by hypothesis.
Finally, we get:

(o)− lim
n

∫
X
|hn| dµ = (o)− lim

n

∫
X

[hn(x)]+ dµ+

+ (o)− lim
n

∫
G

[hn(x)]− dµ = 0. 2

We now state a version of the monotone convergence theorem.

Theorem 3.24 With the same notations as above, let (fn)n be an increasing se-
quence of non negative integrable maps, convergent in measure to an integrable func-
tion f. Then, ∫

X
f dµ = (o)− lim

n

∫
X
fn dµ,

and therefore fn → f in L1.

Proof: It is an immediate consequence of Vitali ’s Theorem.

12



4 Countable additive case.

If µ is countably additive, convergence almost everywhere implies convergence in
measure; this can be proved along classical lines, hence we simply state the results.
So both Levi’s theorem and Fatou’s lemma hold.

Proposition 4.1 Let R be a Dedekind complete Riesz space, A ⊂ P(X) a σ-
algebra, and assume that µ : A → R is a σ-additive mean. Set

Aεn ≡ {x ∈ X : |fn(x)− f(x)| > ε}, ∀ ε > 0.

Then, fn converges almost everywhere to f if and only if µ(lim supn Aεn) = 0, ∀ ε >
0.

It is easy to prove the following:

Proposition 4.2 Let R, A and µ be as above, and assume that µ is σ-additive.
Then, for each sequence (An) in A, one has:

µ(lim inf
n

An) ≤ lim inf
n

µ(An) ≤ lim sup
n

µ(An) ≤ µ(lim sup
n

An).

A straightforward consequence of Proposition 4.2 is the following:

Theorem 4.3 Let fn, f and µ be as above. If (fn) converges to f almost every-
where, then (fn) converges to f in measure.

From Theorems 3.24 and 4.3, and by proceeding as in the classical case, it follows:

Theorem 4.4 With the same notations and hypotheses as above, let (fn)n be an
increasing sequence of nonnegative measurable maps. Then f(x) ≡ limn fn(x) is
integrable if and only if limn

∫
X fn dµ ∈ R, and in this case∫

X
f dµ = (o)− lim

n

∫
X
fn dµ.

A consequence of Beppo Levi ’s Theorem is the following version of Fatou’s
Lemma:

Theorem 4.5 Let X, R, µ be as above, (fn)n a sequence of nonnegative integrable
maps, f(x) ≡ lim infn fn(x), ∀ x ∈ X. If lim infn

∫
X fn dµ ∈ R, then f is

integrable, and lim infn
∫
X fn dµ ≥

∫
X f dµ.

13



5 Radon-Nikodym Theorem.

In this section, we give a Greco-type condition for the existence of a Radon-Nikodym
derivative for the monotone integral, introduced in the previous section (see [14]) .
We show that the Radon-Nikodym problem, in general, has no solutions. Indeed,
there exist two IR2-valued σ-additive means µ and ν, with ν � µ, such that there
is no function f : X ≡ {0, 1} → IR such that ν =

∫
X f dµ.

Let X ≡ {0, 1}, A ≡ P(X), R ≡ IR2 (endowed with componentwise ordering),
µ, ν : P(X)→ IR2 defined by setting

µ({0}) = (1, 0), µ({1}) = (0, 1), ν({0}) = (0, 1), ν({1}) = (1, 0).

It is easy to check that µ and ν are σ-additive, ν is absolutely continuous w. r. to µ
and µ is absolutely continuous w. r. to ν. However, there is no function f : X → IR,
such that ν(A) =

∫
A f dµ, ∀ A ∈ P(X) : otherwise, we have:

(1, 0) = ν({1}) =
∫
{1}

f dµ = f(1) µ({1}) = (0, f(1)),

contradiction.
Furthermore, it is easy to see that, for every r > 0, there exists no Hahn decompo-
sition for the map ν − r µ.

Now we introduce two preliminary lemmas.

Proposition 5.1 Let µ, ν : A → R be two means with ν � µ. If there exists an
A-measurable function f : X → ĨR

+

0 such that, for every E ∈ A:

ν(E) =
∫
E
fdµ

then, for every r > 0, the set Ar = {x ∈ X : f(x) > r} satisfies:

5.1.1) ν(E) ≥ rµ(E) for every E ∈ Ar ∩ A;

5.1.2) ν(E) ≤ rµ(E) for every E ∈ Acr ∩ calA;

5.1.3) (o)− limr→+∞ ν(Ar) = 0.

Proof: Ar ∈ A for every r > 0 since f is measurable; moreover, for every r > 0
and for every E ∈ Ar ∩ A, F ∈ Acr ∩ A, we have:

ν(E) =
∫
E
fdµ ≥

∫
E
rdµ = rµ(E)

ν(F ) =
∫
F
fdµ ≤

∫
F
rdµ = rµ(F ).

This proves (5.1.1) and (5.1.2).
(5.1.3) is a consequence of (5.1.1): indeed, (5.1.1) yields

µ(Ar) ≤
ν(Ar)
r
≤ ν(X)

r
, ∀ r > 0.

So, (o)− limr→+∞ µ(Ar) = 0, and hence (o)− limr→+∞ ν(Ar) = 0. 2
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Proposition 5.2 Let µ, ν : A → R be two means with ν � µ. Let D ≡ { i
2n , i, n ∈

IN}. If there exists a decreasing family (Ar)r∈D, such that A0 = X and satisfying
(5.1.1) and (5.1.2), then the function f : X → [0,+∞], defined by f(x) ≡ sup{r ∈
D : x ∈ Ar}, is integrable and

ν(E) =
∫
E
fdµ, ∀ E ∈ A.

Proof: f is A-measurable, since, ∀ t > 0, {x ∈ X : f(x) > t} = ∪r∈D,r>tAr. Let
fn ≡ 1

2n

∑n2n

k=1 χA k
2n

, for every n ∈ IN. Then

f ∧ n− f ∧ 1
2n
≤ fn ≤ f, ∀ n.

By construction, for every E ∈ A,∫
E
fndµ =

1
2n

n2n∑
k=1

µ(A k
2n

) =
n2n−1∑
k=1

k

2n
[
µ(A k

2n
∩ E)− µ(A k+1

2n
∩ E)

]
+ nµ(An ∩ E) ≤

≤
n2n−1∑
k=1

[
ν(A k

2n
∩ E)− ν(A k+1

2n
∩ E)

]
+ nν(An ∩ E) ≤ ν(E).

So,

sup
n

∫
X
fndµ ≤ ν(X) ∈ R

and thus

sup
n

∫
X

(f ∧ n) dµ ≤ sup
n

∫
X

(fn + 1) dµ ≤ ν(X) + µ(X).

So, by Proposition 3.11, f is integrable, and hence, by Proposition 3.8, f · χE is
integrable, ∀ E ∈ A. Thus

(o)− lim
n

[
∫
E

(f ∧ n) dµ−
∫
E

(f ∧ 1
2n

) dµ] = (o)− lim
n

∫
E

(f ∧ n) dµ =
∫
E
f dµ,

and therefore

(o)− lim
n

∫
E
fn dµ =

∫
E
f dµ

and ∫
E
fdµ ≤ ν(E), ∀ E ∈ A.

On the other hand,∫
E
fndµ =

n2n−1∑
k=1

k + 1
2n

[
µ(A k

2n
∩ E)− µ(A k+1

2n
∩ E)

]
+ nµ(An ∩ E) +

− 1
2n

n2n−1∑
k=1

[
µ(A k

2n
∩ E)− µ(A k+1

2n
∩ E)

]
≥

≥ ν(A 1
2n
∩ E)− ν(An ∩ E)− 1

2n
(
µ(A k

2n
)− µ(An ∩ E)

)
.
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Taking the (o)-limits as n→∞, we obtain∫
E
fdµ = ν(E). 2

A consequence of Proposition 5.1 and 5.2 is the following Radon-Nikodym Theorem.

Theorem 5.3 Let µ, ν : A → R be two means with ν � µ. Then the following are
equivalent:

(5.3.a) there exists an A-measurable function f : X → ĨR
+

0 such that, for every
E ∈ A:

ν(E) =
∫
E
fdµ;

(5.3.b) there exists a family (Ar)r>0 of measurable sets such that for every r > 0:

(5.3.b.1) ν(E) ≥ rµ(E) for every E ∈ Ar ∩ A;
(5.3.b.2) ν(E) ≤ rµ(E) for every E ∈ Acr ∩ A.

The following is a different formulation of 5.3.

Theorem 5.4 Let µ, ν : A → R be two means with ν � µ. Then the following are
equivalent:

(5.4.a) there exists a A-measurable function f : X → ĨR
+

0 such that, for every
E ∈ A:

ν(E) =
∫
E
fdµ;

(5.4.b) for every r > 0 the measure ν − rµ admits a Hahn decomposition, namely
there exist two disjoint measurable sets (Br, Cr) such that, ∀ E ∈ A :

(ν − rµ)+(E) = (ν − rµ)(E ∩Br)
(ν − rµ)−(E) = (ν − rµ)(E ∩ Cr)

Proof: (5.4.a) =⇒ (5.4.b)
By Theorem 5.3, there exists a family (Ar)r>0 of measurable sets such that, for
every r > 0:

(5.3.b.1) ν(E) ≥ rµ(E) for every E ∈ Ar ∩ A;

(5.3.b.2) ν(E) ≤ rµ(E) for every E ∈ Acr ∩ A
Set Br ≡ Ar, Cr ≡ Acr. For every E ∈ Ar ∩ A, we have:

(ν − rµ)+(E) = (ν − rµ)+(E ∩Ar) + (ν − rµ)+(E ∩Acr) =
= (ν − rµ)+(E ∩Ar) = (ν − rµ)(E ∩Ar)

from (5.3.b.1), since (ν − rµ)(F ) ≤ 0, ∀ F ∈ E ∩Acr ∩ A.
So we obtain, for every E ∈ A,

(ν − rµ)+(E) = (ν − rµ)(E ∩Br).
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Analogously, for each E ∈ A,

(ν − rµ)−(E) = (ν − rµ)(E ∩ Cr).

(5.4.b) =⇒ (5.4.a)
It is easy to check that, if (5.4.b) holds, then (5.3.b.1.) and (5.3.b.2.) are satisfied.
The assertion follows by Proposition 5.2. 2
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