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Abstract

A comparison among different types of integral in Riesz spaces is
given.
A.M.S. Classification: 28A70.

1 Introduction.

In a previous paper (see [4]), we introduced a ”monotone-type” inte-
gral for extended-real valued maps, with respect to Riesz-space-valued
finitely additive function (see also [9]), [12]). More precisely, given a
mean µ : A → R and a measurable function f : X → ĨR

+

0 , we say that
f is integrable in the monotone sense, or (M)-integrable, if there exists
in R the

(o)− lim
a→+∞

∫ a

0

u(t) dt,

where u(t) ≡ µ({x ∈ X : f(x) > t}) dt, ∀ t ∈ IR+, and the integral is
intended as a Riemann-type integral.
In this paper, firstly we show that the Riemann integral is equivalent
to the Mengoli-Cauchy integral, and after we compare the monotone
integral with other types of integrals.
In particular, we introduce a Dunford-Schwartz-type integral (see also
[11]), similar to the one introduced in [3], but with some differences,
and we prove that it coincides with the monotone integral, by virtue
of the Vitali-type theorem for the (M)-integral given in [4].
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Furthermore, some comparisons with pointwise-type integral and
Chojnacki-integral are investigated.

Our thanks to Prof. D. Candeloro for his helpful suggestions.

2 Preliminaries.

Definition 2.1 LetX be any set,R a Dedekind complete Riesz space,A ⊂
P(X) an algebra. A map µ : A → R is said to be a mean if µ(A) ≥
0, ∀ A ∈ A, and µ(A ∪ B) = µ(A) + µ(B), whenever A ∩ B = ∅. A
mean µ is countably additive (or σ-additive ) if µ(∩n An) = infn µ(An),
whenever (An)n is a decreasing sequence in A, such that ∩n An ∈ A.

Definition 2.2 A net {xα}α∈Λ is said to be (o)-convergent (or simply
convergent) if there exist in R the quantities

(o)− lim sup
α∈Λ

xα ≡ inf
α

sup
λ≥α

xλ

and
(o)− lim inf

α∈Λ
xα ≡ sup

α
inf
λ≥α

xλ,

and they coincide;
convergent to x if x = (o) − lim supα∈Λ xα = (o) − lim infα∈Λ xα; in
this case, we write (o)− limα∈Λ xα = x, and say that x is the (o)-limit
of {xα}.

Definition 2.3 A net {xα}α is said to be (o)-Cauchy (or simply Cauchy
) if

lim sup
α, β

|xα − xβ | = 0.

Definition 2.4 A Riesz space R is called [σ]-Dedekind complete if
every [countable] subset of R, bounded from above, has supremum in
R.

The following result justifies the above definition:

Proposition 2.5 Let R be a Dedekind complete Riesz space. Then, a
net in R is convergent if and only if it is Cauchy (see also [15]).

3 An equivalent definition of Riemann-integral
for Riesz-space-valued functions.

In [4] we defined the integral
∫ a

0
u(t) dt as a Riemann - type integral.

This integral can be defined also as a ”Mengoli-Cauchy” type integral.
We will show that the ”Riemann”-integral and the ”Mengoli-Cauchy”-
integral coincide.
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Definition 3.1 Given an interval [a, b] ⊂ IR, we call division of [a, b]
a finite set {x0, x1, . . . , xn} ⊂ [a, b], where x0 = a, xn = b, and
xi < xi+1, ∀ i = 0, . . . , n. We call mesh of D the quantity (δ(D)) ≡
maxi (xi+1 − xi). We say that D1 ≥ D2 if δ(D1) ≤ δ(D2).

We now recall the definition of ”Riemann-integral” given in [4].

Definition 3.2 Let R be a Dedekind complete Riesz space, and u :
[a, b]→ R a bounded map. We call upper integral [resp. lower integral
] of u the element of R given by

inf
v∈Vu

∫ b

a

v(t) dt [ sup
s∈Su

∫ b

a

s(t) dt],

where

Vu ≡ {v : v is a step function , v(t) ≥ u(t), ∀ t ∈ [a, b]}
Su ≡ {s : s is a step function , s(t) ≤ u(t), ∀ t ∈ [a, b]}.

We say that a bounded function u : [a, b] → R is Riemann-integrable
(or (R)-integrable), if its lower integral coincides with its upper integral,
and, in this case, we call integral of u (and write

∫ b
a
u(t) dt) the

common value of them. We also indicate it by

(R)−
∫ b

a

u(t) dt.

Definition 3.3 Let [a, b] ⊂ IR,R be as above, and u : [a, b] → R be
a map. We say that u is Mengoli-Cauchy integrable ( (MC)-integrable
) if there exists an element I ∈ R and a sequence (pn)n, pn ↓ 0, such
that,

sup
δ(D)≤ 1

n

|
k∑
i=1

u(zi)(xi− xi−1)− I| ≤ pn, ∀ zi ∈ [xi−1, xi] (i = 1, . . . , k),

and we write (MC)−
∫ b
a
u(t) dt ≡ I.

The following result holds:

Theorem 3.4 With the same notations as above, let u : [a, b]→ R be
Mengoli- Cauchy integrable. Then u is bounded.

The proof is straightforward.

Theorem 3.5 Let u : [a, b]→ R be Mengoli-Cauchy integrable. Then,
u is Riemann integrable, and

(R)−
∫ b

a

u(t) dt = (MC)−
∫ b

a

u(t) dt.
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Proof. Let I, pn ↓ 0 as in Definition 3.3. Let D ≡ {x0, x1, . . . , xk} be
such that δ(D) < 1

n . We consider the following two functions associated
with D :

s0(x) =
{

inft∈]xi−1,xi[ u(t), x ∈]xi−1, xi[, i = 1, . . . , k
u(xi), x = xi, i = 0, 1, · · · k;

v0(x) =
{

supt∈]xi−1,xi[ u(t), x ∈]xi−1, xi[, i = 1, . . . , k
u(xi), x = xi, i = 0, 1, · · · k;

By hypothesis, we have:

I − pn ≤
k∑
i=1

u(zi) (xi − xi−1) ≤ I + pn.

Then, keeping fixed zi for i ≥ 2, and taking the suprema as z1 varies,
we get

I − pn ≤
∑
i≥2

u(zi) (xi − xi−1) + v0(
x1 + x0

2
) (x1 − x0) ≤ I + pn.

Now, we repeat the same procedure, keeping fixed zi for i ≥ 3, and so
on, until we obtain

I − pn ≤
∫ b

a

v0(t) dt ≤ I + pn.

Similarly we can get

I − pn ≤
∫ b

a

s0(t) dt ≤ I + pn

and hence ∫ b

a

v0(t) dt− I ≤ pn,

I −
∫ b

a

s0(t) dt ≤ pn,

from which we obtain

|∗
∫ b

a

u(t) dt− I| ≤ pn,

|∗
∫ b

a

u(t) dt− I| ≤ pn,

∗
∫ b

a

u(t) dt−∗
∫ b

a

u(t) dt ≤ 2 pn.
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By arbitrariness of D, we find that

∗
∫ b

a

u(t) dt =∗
∫ b

a

u(t) dt = I2.

Theorem 3.6 Let u : [a, b] → R be Riemann-integrable. Then, u is
Mengoli-Cauchy integrable, and

(MC)−
∫ b

a

u(t) dt = (R)−
∫ b

a

u(t) dt.

Proof: Fix arbitrarily s ∈ Su and v ∈ Vu−s. Choose a division D∗ ≡
{c0, c1, . . . , cN−1}, such that both s and v are constant in ]cj−1, cj [, ∀ j,
and put M ≡ supx∈[a,b] u(x). Fix n ∈ IN, and consider a division
D ≡ {x0, x1, . . . , xk}, such that δ(D) ≤ 1

n . Let zi be in [xi−1, xi].
Now define the step function θ : [a, b]→ R by setting

θ(x) =

 u(zi), if x ∈ [xi−1, xi[, i = 1, 2, . . . , k

u(b), if x = b.

If x ∈ [xi−1, xi] ⊂]cj−1, cj [ for some suitable j, then we have:

|u(x)− θ(x)| = |u(x)− u(zi)| ≤ [u(x)− s(x)] + |s(x)− u(zi)| ≤
≤ v(x) + sup

x∈[xi−1,xi]

[u(x)− s(x)] ≤ 2 v(x).

If x ∈ [xi−1, xi] 6⊂]cj−1, cj [ ∀ j, then

|u(x)− θ(x)| ≤ |u(x)|+ |θ(x)| ≤ 2 M.

So,

|(R)−
∫ b

a

u(x) dx−
n∑
i=1

u(zi)(xi − xi−1)| = |(R)−
∫ b

a

u(x) dx−
∫ b

a

θ(x) dx| ≤

≤
∫ b

a

|u(x) − θ(x)| dx ≤ 2
∫ b

a

v(x) dx+ 2 N
1
n
M.

Thus, we get:

0 ≤ sup
δ(D)≤ 1

n

|(R)−
∫ b

a

u(x) dx−
n∑
i=1

u(zi)(xi − xi−1)| ≤

≤ 2
∫ b

a

v(x) dx+ 2 N
1
n
M.
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By arbitrariness of v and (R)-integrability of u− s, we obtain:

0 ≤ (o)− lim sup
n→+∞

sup
δ(D)≤ 1

n

|(R)−
∫ b

a

u(x) dx−
n∑
i=1

u(zi)(xi − xi−1)| ≤

≤ 2 inf
v∈Vu−s

∫ b

a

v(x) dx+ (o)− lim
n→+∞

2 N
1
n
M =

= 2
∫ b

a

[u(x)− s(x)] dx = 2
∫ b

a

u(x) dx− 2
∫ b

a

s(x) dx.

By arbitrariness of s and (R)-integrability of u, we get:

0 ≤ (o)− lim sup
n→+∞

sup
δ(D)≤ 1

n

|(R)−
∫ b

a

u(x) dx−
n∑
i=1

u(zi)(xi − xi−1)| ≤

≤ 2
∫ b

a

u(x) dx− 2 sup
s∈Su

∫ b

a

s(x) dx = 0.

So,

(o)− lim
n→+∞

sup
δ(D)≤ 1

n

|(R)−
∫ b

a

u(x) dx−
n∑
i=1

u(zi)(xi − xi−1)| = 0

uniformly with respect to the zi. 2

4 Bochner-type integrals of real-valued func-
tion.

With the same notations as in the previous section, if R1 = IR, and
R ≡ R2 = R3 is a Dedekind complete Riesz space, we can formulate
the definition of convergence in measure and develop our theory in a
way, which is somewhat different from the one in [3].
In [3], definitions of convergence in measure, integral, and so on were
introduced; here, we give other definitions of ”convergence in measure”,
”integral”, etc. and compare them with the former.

Definition 4.1 Let X be any set, µ : A → R a positive finitely addi-
tive set function. We say that a sequence (fn)n of extended real-valued
functions, defined on X, (o)-converges in measure to f if

(o)− lim
n

µ({x ∈ X : |fn(x)− f(x)| > ε}) = 0, ∀ ε > 0;

(B)-converges in measure to f if there exist two sequences (pn)n, (qn)n, R 3
pn ↓ 0, IR 3 qn ↓ 0, such that

µ({x ∈ X : |fn(x)− f(x)| > qn}) ≤ pn, ∀ n ∈ IN

(see [3]).
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Definition 4.2 Let (fn : X → ĨR)n be a sequence of simple functions.
We say that (fn)n is equiintegrable if

sup
n

∫
X

|fn| dµ ∈ R, (1)

and

(o)− lim
n

sup
k≥n

(∫
An

|fk| dµ
)

= 0, (2)

whenever (o)− limk µ(Ak) = 0.

Now, we compare (B)-convergence in measure with (o)-convergence
in measure. We begin with the following:

Definition 4.3 Let R be any Riesz space, and let u ∈ R, u ≥ 0.
We say that u has the Egoroff property if, for each double sequence
(un,k)n,k in R, satisfying u ≥ un,k ↓ 0 (k → +∞, n = 1, 2, . . .),
there exists a sequence (vn)n in R, vn ↓ 0, with the property that, for
all n ∈ IN, there exists k = kn ∈ IN, such that un,kn ≤ vn.
We say that a Riesz space R has the Egoroff property (or is Egoroff )
if every positive element of R has the Egoroff property.

We note that, if Σ is any finite or countable set, then IRΣ is Egoroff,
but, if the cardinality of Σ is greater or equal to c, then IRΣ is not Ego-
roff. Moreover, if R = Lp(λ), where 0 ≤ p ≤ ∞, and λ is a countably
additive σ-finite real-valued measure, then R is Egoroff. Furthermore,
every solid subspace of an Egoroff space R is Egoroff too (see also [14]).
The following result gives the comparison announced:

Theorem 4.4 Let µ : A → R be a positive finitely additive set func-
tion. If (fn : X → IR)n (B)-converges in measure to f ∈ IRX ,
then (fn)n (o)-converges in measure to f.
Moreover, if µ(X) has the Egoroff property, and (fn)n (o)-converges
in measure to f, then (fn)n (B)-converges in measure to f.

Proof: We begin with proving the first part of the assertion. Fix ε > 0,
and let (pn)n and (qn)n satisfy the definition of (o)-convergence in
measure. Then, there exists a natural number n(ε) such that qn <
ε, ∀ n ≥ n, and so

µ({x ∈ X : |fn(x)− f(x)| > ε}) ≤ µ({x ∈ X : |fn(x)− f(x)| > qn}).

Define rn = rn(ε) ≡

 µ(X) if n < n(ε)

pn ∧ µ(X), if n ≥ n(ε).
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Thus, for every n ∈ IN, we have:

µ({x ∈ X : |fn(x)− f(x)| > ε}) ≤ rn ↓ 0.

Now, we prove the second part. By hypothesis, there exists a double
sequence (rn,k)n,k, R 3 rn,k ↓ 0 (k → +∞, n = 1, 2, . . .) such that

µ({x ∈ X : |fk(x)− f(x)| > 1
n
}) ≤ rn,k, ∀ n, k ∈ IN.

Put un,k ≡ rn,k ∧ µ(X), ∀ n, k. Of course, un,k ≤ µ(X) for ev-
ery n, k, and un,k ↓ 0 (k → +∞, n = 1, 2, . . .). As µ(X) has the
Egoroff property, then there exists a sequence (vn)n, vn ↓ 0, such
that, ∀ n, ∃ k = k(n) ∈ IN : un,k(n) ≤ vn.

For k ∈ IN, set pk ≡

 µ(X) ∨ v1, if 1 ≤ k ≤ k1

vn, if kn ≤ k ≤ kn+1, n ∈ IN.

Moreover, put qk ≡

 1, if 1 ≤ k ≤ k1

1
n , if kn ≤ k ≤ kn+1, n ∈ IN.

It is easy to check that

µ({x ∈ X : |fk(x)− f(x)| > qk}) ≤ pk, ∀ k ∈ IN,

and pk, qk ↓ 0. So, the theorem is completely proved.

Definition 4.5 A sequence (fn)n of measurable functions is said to
be Cauchy in measure if

(o)− lim
n

µ({x ∈ X : |fn(x)− fn+p(x)| > ε}) = 0

uniformly with respect to p ∈ IN, ∀ ε > 0.

Definition 4.6 A sequence (fn) of simple functions converges in L1

to the simple function f if

(o)− lim
n

∫
X

|fn − f | dµ = 0.
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Convergence in L1 can be characterized as follows:

Proposition 4.7 Let fn and f be as above. Then, (fn)n converges in
L1 to f if and only if

(o)− lim
n

∫
A

fn dµ =
∫
A

f dµ

uniformly with respect to A ∈ A.
Proof: The ”only if” part is easy.
We now turn to the ”if” part. By hypothesis, there exists a sequence
(pn)n, R 3 pn ↓ 0, such that

|
∫
A

fn dµ−
∫
A

f dµ| ≤ pn, ∀ n ∈ IN, ∀ A ∈ A.

For each n ∈ IN, let An ≡ {x ∈ X : fn(x) ≥ f(x)}. We have:∫
X

|fn − f | dµ =
∫
An

(fn − f) dµ+
∫
Anc

(f − fn) dµ =

= |
∫
An

fn dµ−
∫
An

f dµ|+ |
∫
Anc

f dµ−
∫
Anc

fn dµ| ≤ 2 pn,

that is the assertion. 2

Definition 4.8 A sequence (fn) of simple functions is Cauchy in L1

if
(o)− lim

n

∫
X

|fn − fn+p| dµ = 0

uniformly with respect to p ∈ IN.
Analogously as in Proposition 4.7, one can prove the following:

Proposition 4.9 Let (fn)n be as above. Then, (fn)n is Cauchy in
L1 if and only if the sequence (

∫
A
fn dµ)n is Cauchy uniformly with

respect to A ∈ A.

Definition 4.10 Under the same notations as above, a map f is said
to be integrable if there exists a sequence (fn)n of simple functions,
convergent in measure to f and Cauchy in L1. In this case, we define∫

A

f dµ ≡ (o)− lim
n

∫
A

fn dµ, ∀ A ∈ A.

Definition 4.11 If f is integrable, put∫
A

f dµ ≡ (o)− lim
n→∞

∫
A

fn dµ, ∀ A ∈ A,

where (fn)n is a sequence of simple function, convergent in measure to
f and Cauchy in L1.
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Now, we prove that the integral in 4.11 is well-defined.

Theorem 4.12 Let f be an integrable function, and (fn)n as in 4.11.
Then the limit (o)− limn→∞

∫
A
fn dµ exists uniformly with respect

to A ∈ A and does not depend on the choice of (fn)n.

Proof (see also [11]): Let (f1
n)n , (f2

n)n be two sequences of simple
maps, convergent in measure to the same limit f and Cauchy in L1.
Then, there exists (qin)n, R 3 qin ↓ 0, such that

|
∫
A

f in dµ−
∫
A

f im dµ| ≤
∫
X

|f in − f im| dµ ≤ qin ≤ q1
n + q2

n (i = 1, 2),

∀ n ∈ IN, ∀ m ≥ n, ∀ A ∈ A.
As R is Dedekind complete, then the sequences (

∫
A
f in dµ)n (i =

1, 2) are (o)-convergent, uniformly with respect to A ∈ A. We denote
by li (A) their (o)−limits. For every A ∈ A, let Pn(A) ≡

∫
A
pn dµ,

where pn(x) ≡ |f1
n(x)−f2

n(x)|, ∀ x ∈ X. The sequence (pn)n converges
in measure to 0, and it is easy to see that (Pn(A))n is Cauchy uniformly
with respect to A; then, (o)− limn Pn(A) exists in R, uniformly with
respect to A ∈ A : we denote this limit by P (A). As the integral of
simple functions is absolutely continuous, we have that

[(o)− lim
k

µ(Ek) = 0] =⇒ [(o)− lim
k

Pn(Ek) = 0, ∀ n ∈ IN.]

Now, we prove that (o) − limk P (Ek) = 0. Fix arbitrarily n, k ∈ IN.
Then, there exist some sequences in R, (tn)n, (rn,k)n,k, such that
tn ↓ 0, rn,k ↓k 0 for all fixed n ∈ IN, and

|P (Ek)− Pn(Ek)| ≤ tn, Pn(Ek) ≤ rn,k, ∀ n, k.

Thus, ∀ n ∈ IN, we have:

0 ≤ (o)− lim sup
k

(P (Ek)) ≤ (o)− lim sup
k

|P (Ek)− Pn(Ek)|+

+(o)− lim sup
k

(Pn(Ek)) ≤ tn + inf
k

rn,k = tn.

By arbitrariness of n, we get (o)− limk (P (Ek)) = 0.
By convergence in measure of (pn)n to 0, for every fixed ε > 0 and
n ∈ IN, we have:

0 ≤ P (X) = P ({x ∈ X : pn(x) > ε}) + [P ({x ∈ X : pn(x) ≤ ε})− Pn({x ∈ X : pn(x) ≤ ε})] +
+ Pn({x ∈ X : pn(x) ≤ ε}) ≤ vn + wn + ε µ(X),

for some suitable sequences (vn)n, (wn)n in R, such that vn ↓ 0 ↓ wn.
Taking the infima with respect to n, and by arbitrariness of ε, we
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obtain P (X) = 0. As 0 ≤ Pn(A) ≤ Pn(X) ∀ n ∈ IN, ∀ A ∈ A, we get:
P (A) = 0, ∀ A ∈ A. So, ∀ n ∈ IN, ∀A ∈ A, we get:

sup
A
|l1(A)− l2(A)| ≤ |

∫
A

f1
n dµ− l1(A)|+ |l2(A)−

∫
A

f2
n dµ|+

+|
∫
A

f1
n dµ−

∫
A

f2
n dµ| ≤ an + bn +

∫
A

pn dµ ≤ an + bn + cn,

for some suitable sequences (an)n, (bn)n, (cn)n, an ↓ 0, bn ↓ 0, cn ↓ 0.
Taking the infima, we get:

sup
A
|l1(A)− l2(A)| ≤ inf

n
(an + bn + cn) = 0.

Thus, l1(A) = l2(A), ∀ A ∈ A. 2

Remark 4.13 It is readily seen that the integral introduced in 4.11
is a linear monotone functional and a finitely additive set function.

Lemma 4.14 Under the same notations as above, let f be an inte-
grable function, and (fn)n a sequence of simple function, convergent
in measure to f and Cauchy in L1. Then,

(o)− lim
n

∫
X

|fn − f | dµ = 0.

Proof: As (fn)n is Cauchy in L1, there exists a sequence (yn)n, R 3
yn ↓ 0, such that ∫

X

|fn − fm| dµ ≤ yn.

Fix n ∈ IN. As (fm)m converges in measure to f, then (|fn − fm|)m
converges in measure to |fn − f |. Moreover, it is easy to check that
(|fn − fm|)m is Cauchy in L1. So,∫

A

|fn − f | dµ = (o)− lim
m

∫
A

(|fn − fm|) dµ,

uniformly with respect to A ∈ A, and thus∫
X

|fn − f | dµ ≤ yn,

that is the assertion. 2

Lemma 4.15 Let f be an integrable function, and let (An,λ)n∈IN ,λ∈Λ
be a family of subsets of X, such that

(o)− lim
n

(
sup
λ

µ(An,λ)
)

= 0.

11



Then,

(o)− lim
n

(
sup
λ

∫
An,λ

|f | dµ

)
= 0.

Proof: Let (fh)h∈IN be as in Lemma 4.14. There exist some sequences
(zn)n, (dh)h, R 3 zn ↓ 0, R 3 dh ↓ 0, and there exists some real
numbers vh, h ∈ IN, such that, for all n, k, λ, we have:∫

An,λ

|f | dµ ≤
∫
X

|f − fh| dµ+
∫
An,λ

|fh| dµ ≤ dh + vh zn,

and hence
sup
λ∈Λ

∫
An,λ

|f | dµ ≤ dh + vh zn;

thus

0 ≤ (o)− lim sup
n

(
sup
λ∈Λ

∫
An,λ

|f | dµ
)
≤ dh+(o)− lim sup

n
vh zn, ∀ h

and therefore

0 ≤ (o)− lim sup
n

(
sup
λ∈Λ

∫
An,λ

|f | dµ

)
≤ inf

h
dh = 0,

that is

(o)− lim
n

(
sup
λ∈Λ

∫
An,λ

|f | dµ

)
= 0.2

We now state the following:

Theorem 4.16 Let (fn)n be a sequence of simple functions of RX ,
convergent in measure to f ∈ RX . Then, the following are equivalent:

4.16.1.) (fn)n is Cauchy in L1

4.16.2.) f is integrable and (fn)n converges in L1 to f.

4.16.3.) supn
∫
X
fn dµ ∈ R; and

(o)− lim
n

[
sup
λ

(
sup
m≥n

∫
An,λ

|fm| dµ

) ]
= 0,

for every family (An,λ)n∈IN ,λ∈Λ of subsets of X, such that

(o)− lim
n

(
sup
λ

µ(An,λ)
)

= 0.
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4.16.4.) (o)− limn supk≥n
∫
{x∈X:|fk(x)|>n} |fk| dµ = 0.

Proof: We observe that we will use convergence in measure only in or-
der to prove the implications [4.16.1.)] =⇒ [4.16.2.)] and [4.16.3.)] =⇒
[4.16.1.)].

[4.16.1.)] =⇒ [4.16.2.)] : See Definition 4.10 and Lemma 4.14.
[4.16.2.)] =⇒ [4.16.3.)] : Fix λ ∈ Λ, n,m ∈ IN, with m ≥ n. By virtue
of Lemma 4.15, we have:∫

An,λ

|fm| dµ ≤
∫
X

|f − fm| dµ+

+
∫
An,λ

|f | dµ ≤ sm + en ≤ sn + en,

for some suitable sequences (sn)n and (en)n, R 3 sn ↓ 0, R 3 en ↓ 0.
So,

sup
λ

(
sup
m≥n

∫
An,λ

|fm| dµ

)
≤ sn + en, ∀ n ∈ IN,

and therefore

(o)− lim
n

[
sup
λ

(
sup
m≥n

∫
An,λ

|fm| dµ

)]
= 0.

By proceeding analogously, it is easy to prove that

sup
n

∫
X

fn dµ ∈ R.

[4.16.3.)] =⇒ [4.16.4.)] : For every n, k ∈ IN, let An,k ≡ {x ∈ X :
|fk(x)| > n}. Then, there exists r ∈ R, such that

r ≥
∫
X

|fk| dµ ≥
∫
An,k

|fk| dµ ≥
∫
An,k

n dµ = n µ(An,k).

Thus, µ(An,k) ≤ r
n . So,

(o)− lim
n

∫
An,k

|fn+p| dµ = 0

uniformly with respect to k and p ∈ IN. Therefore,

(o)− lim
n

(
sup
k≥n

∫
An,k

|fk| dµ

)
= 0.
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(see also [8]) [4.16.4.)] =⇒ [4.16.3.)] : Let An,k (n, k ∈ IN) be as in the
previous step. For each n ∈ IN, and for every k ∈ IN, with k ≥ n, one
has:∫

X

|fk| dµ =
∫
X∩An,k

|fk| dµ+
∫
X∩Ac

n,k

|fk| dµ ≤ αn + n µ(X),

where αn is a suitable decreasing sequence in R, with infn αn = 0.
Taking n = 1, we get:∫

X

|fk| dµ ≤ α1 + µ(X) :

so,

sup
k≥1

∫
X

|fk| dµ ∈ R.

Let now (En,λ)n,λ be such that (o) − limn supλ µ(En,λ) = 0. Then,
∀ λ ∈ Λ, ∀ h, n, k ∈ IN, with k ≥ n, and k ≥ h, we have:∫
En,λ

|fk| dµ =
∫
En,λ∩Ah,k

|fk| dµ+
∫
En,λ∩Ach,k

|fk| dµ ≤ ρh+h µ(En,λ) ≤ ρh+h σn,

for two suitable sequences (ρh)h and σn in R, such that ρh ↓ 0 ↓ σn.
Therefore, for every k ≥ n, we get:

sup
λ

(
sup
k≥n

∫
En,λ

|fk| dµ

)
≤ ρh + h σn.

Thus,

0 ≤ (o)−lim sup
n

[
sup
λ

(
sup
k≥n

∫
En,λ

|fk| dµ

)]
≤ ρh+h inf

n
σn = ρh, ∀ h.

By arbitrariness of h, we get:

0 ≤ (o)− lim sup
n

[
sup
λ

(
sup
k≥n

∫
En,λ

|fk| dµ

)]
≤ inf

h
ρh = 0.

Hence,

(o)− lim
n

[
sup
λ

(
sup
k≥n

∫
En,λ

|fk| dµ

)]
= 0.

[4.16.3.)] =⇒ [4.16.1.)] : Fix ε > 0. As (fn)n converges in measure
to f, then (fn)n is Cauchy in measure. So, there exists a sequence

14



(zn)n, zn ↓ 0, such that, for each n ∈ IN, ∀ m ≥ n, µ(An,m) ≤ zn,
where An,m = {x ∈ X : |fn(x)− fm(x)| > ε}. By 4.16.3.), we have∫

An,m

|fm| dµ ≤ tn, ∀ n ∈ IN, ∀ m ≥ n,

for a suitable sequence (tn)n, tn ↓ 0. Thus, ∀ n ∈ IN, ∀ m ≥ n :∫
X

|fn − fm| dµ =
∫
An,mc

|fn − fm| dµ+
∫
An,m

|fn − fm| dµ ≤

≤ ε µ(X) +
∫
An,m

|fn| dµ+
∫
An,m

|fm| dµ ≤

≤ ε µ(X) + tn + wn,

for some suitable sequences tn ↓ 0, wn ↓ 0. So, the assertion follows.
2

A consequence of Theorem 4.16 is the following:

Corollary 4.17 With the same hypotheses and notations as above, let
f ∈ RX be an integrable function. Then there exists an equiintegrable
sequence (fn)n of simple functions, convergent in measure to f.

We will prove the following theorem, which is the converse of Corollary
4.17:

Theorem 4.18 If f ∈ RX is such that there exists an equiintegrable
sequence (fn)n of functions, convergent in measure to f, then f is
integrable, and ∫

X

f dµ = lim
n

∫
X

fn dµ.

Now we compare the integral introduced in 4.11 with the (B)-integral
introduced in [3], and the ”monotone integral” introduced in [4].

Definition 4.19 Under the same notations as above, a map f is said
to be (B)-integrable if there exists a sequence (sn)n of simple functions,
satisfying 4.16.3.) and (o)-convergent in measure to f. In this case, we
define

(B)−
∫
A

f dµ ≡ (o)− lim
n

∫
A

sn dµ, ∀A ∈ A.

The following result is a consequence of 4.4 and 4.16.

Theorem 4.20 Let R be a Dedekind complete Riesz space. Then,
every (B)-integrable function f is integrable too. Moreover, if R is
Egoroff, f is integrable if and only if it is (B)-integrable.
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Theorem 4.21 If f : X → IR is bounded measurable, then
∫
X
f dµ =

(M)−
∫
X
f dµ.

Proof: First of all, we note that the quantity at the right side exists
in R, by construction.
Without loss of generality, we may suppose that f is nonnegative.
If f is simple, the assertion is immediate. Now, let L ≡ supx∈X f(x),
and (sn)n be as the functions gn in Proposition 3.11. of [4]. For every
n ∈ IN and x ∈ X, it is:

sn(x) ≤ f(x) ≤ sn(x) +
L

2n
.

So, the sequence (sn)n converges uniformly to f . Then

(o)−lim
n

∫
X

sn dµ = (o)−lim
n

(M)−
∫
X

sn dµ = sup
n

(M)−
∫
X

sn dµ = (M)−
∫
X

f dµ.

We observe that the monotone integral satisfies Lemma 4.15 (see also
[4]); thus, it follows that (sn)n converges in measure to f and satisfies
4.16.3.); so, by Theorem 4.16, we can conclude that f is integrable and∫
X
f dµ = (M)−

∫
X
f dµ. 2

Theorem 4.22 Let f : X → IR be a measurable map. Then, the
following are equivalent:

1.) There exists an equiintegrable sequence of simple functions (sn)n,
convergent in measure to f.

2.) f is (M)-integrable.

3.) f is integrable.

Proof. (see also [5]) Without any restriction, we can suppose that
f is nonnegative.

[1.)] =⇒ [2.)] : Let (sn)n satisfy [1.)]. Then, by Theorem 3.23. of [4]
[Vitali ’s theorem], it follows that f is integrable, and∫

X

f dµ = (o)− lim
n

∫
X

sn dµ = (B)−
∫
X

f dµ.

[2.)] =⇒ [3.)] : Assume that f is (nonnegative and) (M)-integrable,
and let (sn)n be as in Proposition 3.11. of [4]. Then (sn)n is an
(increasing) sequence of simple functions, convergent in measure to f
and satisfying 4.16.3.), because Lemma 4.15 holds for the (M)-integral.
Thus, f is integrable.

[3.)] =⇒ [1.)] : Straightforward.
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Now, when X is a Banach lattice, it is possible to compare the integral
defined in 4.11 with the Bochner integral. The following result holds:

Theorem 4.23 Let R be a Banach lattice, µ : A → R be an s-bounded
finitely additive measure, f : X → IR be a map. Then, f is integrable
if and only if f is Bochner integrable.

Proof: We denote by ν a control for µ. If f is integrable, then there
exists a sequence (sn)n of simple functions, converging in measure to
f and uniformly integrable.
Thus,

∫
· fn dµ � m � ν, uniformly with respect to n. By Theorem

2.5. of [5], f is Bochner integrable.
Conversely, let f be Bochner integrable. Without any restriction, we
may assume that f is nonnegative. Then, there exists a sequence (fn)n
of simple functions, 0 ≤ fn ≤ f, converging in measure to f. Then we
have: ∫

X

fn dµ ≤ (Bochner)−
∫
X

f dµ � µ.

So, integrability of f follows. 2
Hence, in Banach lattices, the Bochner and the monotone integral co-
incide.

Let nowR be a Dedekind complete Riesz space: by Maeda-Ogasawara-
Vulikh representation theorem (see also [1]), there exists a compact
extremally disconnected topological space Ω such that R can be em-
bedded as a solid subspace of C∞(Ω) ≡ {f : Ω→ ĨR : f is continuous,
and {ω ∈ Ω : |f(ω)| = +∞} is nowhere dense in Ω}.
Now, let u : [a, b] → R be a Riemann integrable map. Then, there
exists a nowhere dense set N ⊂ Ω such that the map t 7→ uω(t),
defined by setting uω(t) ≡ u(t)(ω), is real-valued and bounded. We
observe that, for each function s ∈ Su, for every ω 6∈ N, the map
sω(t) ≡ s(t)(ω) is a step function, and

s(t)(ω) ≤ u(t)(ω), ∀ t ∈ [a, b].

So we get, up to the complement of a meager set:(∫ b

a

u(t) dt

)
(ω) =

[
sup
s∈Su

(∫ b

a

s(t) dt

)]
(ω) ≤ sup

w∈Suω

∫ b

a

w(t) dt = ∗

∫ b

a

u(t)(ω) dt;

(∫ b

a

u(t) dt

)
(ω) =

[
inf
v∈Vu

(∫ b

a

v(t) dt

)]
(ω) ≥ inf

z∈Vuω

∫ b

a

z(t) dt = ∗
∫ b

a

u(t)(ω) dt;
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that is, uω is Riemann-integrable, and(∫ b

a

u(t) dt

)
(ω) =

∫ b

a

u(t)(ω) dt.

Remark 4.24 By proceeding as above, we have that, if R = B(D) =
{f ∈ IRD : f is bounded }, where D is an arbitrary set, then(∫ b

a

u(t) dt

)
(d) =

∫ b

a

u(t)(d) dt ∀ d ∈ D.

Endow now D with the discrete topology, let R
′ ≡ C(β D) = {f ∈

IRβD : f is continuous }, and u : [a, b] → R
′

be a Riemann-integrable
function: then, the map ξ 7→ (

∫ b
a
u(t) dt)(ξ) is the (unique) continuous

extension to the whole of β D of the map d 7→ (
∫ b
a
u(t) dt)(d), and thus

it is equal to the Chojnacki-integral of the map u, where the chosen
retraction r : β D → β D is the identity (see also [2], [7]).
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