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Abstract

A comparison among different types of integral in Riesz spaces is
given.
A.M.S. Classification: 28A70.

1 Introduction.

In a previous paper (see [4]), we introduced a "monotone-type” inte-
gral for extended-real valued maps, with respect to Riesz-space-valued
finitely additive function (see also [9]), [12]). More precisely, given a

~+
mean p: A — R and a measurable function f: X — IR, , we say that
f is integrable in the monotone sense, or (M )-integrable, if there exists
in R the

a
(o) — lim u(t) dt,

a——+00 0
where u(t) = p({z € X : f(z) > t}) dt, Vt € IRT, and the integral is
intended as a Riemann-type integral.
In this paper, firstly we show that the Riemann integral is equivalent
to the Mengoli-Cauchy integral, and after we compare the monotone
integral with other types of integrals.
In particular, we introduce a Dunford-Schwartz-type integral (see also
[11]), similar to the one introduced in [3], but with some differences,
and we prove that it coincides with the monotone integral, by virtue
of the Vitali-type theorem for the (M)-integral given in [4].
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Furthermore, some comparisons with pointwise-type integral and
Chojnacki-integral are investigated.
Our thanks to Prof. D. Candeloro for his helpful suggestions.

2 Preliminaries.

Definition 2.1 Let X be any set, R a Dedekind complete Riesz space, A C
P(X) an algebra. A map p:.A— R is said to be a mean if u(A4) >
0, VA€ A and u(AU B) = u(A) + u(B), whenever AN B = (. A
mean p is countably additive (or o-additive ) if p(Ny, An) = inf,, u(4,),
whenever (A,,), is a decreasing sequence in A, such that N,, A, € A.

Definition 2.2 A net {4 }aea is said to be (0)-convergent (or simply
convergent) if there exist in R the quantities
(0) —limsup z, =inf sup z)
a€A X A>a
and

0) — liminf 2, =sup inf =z,
(0) aen ¢ ap ASa

and they coincide;
convergent to x if x = (0) — limsup,cp o = (0) —liminfacp zq; in
this case, we write (0) —limyep o = x, and say that x is the (0)-limit
of {x,}.
Definition 2.3 A net {z, }, is said to be (0)- Cauchy (or simply Cauchy
) if

limsup |zo —zg| =0.

ai

Definition 2.4 A Riesz space R is called [0]-Dedekind complete if
every [countable] subset of R, bounded from above, has supremum in
R.

The following result justifies the above definition:

Proposition 2.5 Let R be a Dedekind complete Riesz space. Then, a
net in R is convergent if and only if it is Cauchy (see also [15]).

3 An equivalent definition of Riemann-integral
for Riesz-space-valued functions.

In [4] we defined the integral foa u(t) dt as a Riemann - type integral.
This integral can be defined also as a ”Mengoli-Cauchy” type integral.
We will show that the ”Riemann”-integral and the ” Mengoli-Cauchy”-
integral coincide.



Definition 3.1 Given an interval [a,b] C IR, we call division of [a,b]
a finite set {xo, 21,..., Tn} C [a,b], where g = a, =, = b, and
x; < Tip1, Vi =0,...,n. We call mesh of D the quantity (6(D)) =
max; (l’iJrl - £Bl) We say that D1 Z D2 if 5(D1) S 6(D2)

We now recall the definition of ”Riemann-integral” given in [4].

Definition 3.2 Let R be a Dedekind complete Riesz space, and u :
[a,b] — R a bounded map. We call upper integral [resp. lower integral
] of u the element of R given by

b b
inf v(t) dt [sup / s(t) dt],

veVy a SES,
where
Vi = {v:wvisastep function , v(t) > u(t), Vt € [a,b]}
Sy = {s:sisastep function , s(t) < u(t), V1t € [a,b]}.

We say that a bounded function u : [a,b] — R is Riemann-integrable
(or (R)-integrable), if its lower integral coincides with its upper integral,

and, in this case, we call integral of u (and write f: u(t) dt) the
common value of them. We also indicate it by

b
(R) —/ u(t) dt.

Definition 3.3 Let [a,b] C IR, R be as above, and w : [a,b] — R be
a map. We say that u is Mengoli-Cauchy integrable ( (MC)-integrable
) if there exists an element I € R and a sequence (pp)n, pn | 0, such
that,

sup |Z w(zi) (@i —xi—1) —I| <pp, V2 €[wic1, 2] (1 =1,...,k),
§(D)<3 =1
and we write (MC) — fab u(t) dt =1.
The following result holds:

Theorem 3.4 With the same notations as above, let u : [a,b] — R be
Mengoli- Cauchy integrable. Then wu is bounded.

The proof is straightforward.

Theorem 3.5 Letu : [a,b] — R be Mengoli-Cauchy integrable. Then,
u is Riemann integrable, and

b b
(R) — / u(t) dt = (MC) — / ult) dt.



Proof. Let I, p, | 0 as in Definition 3.3. Let D = {zg, z1,..., 2} be
such that 6(D) < % We consider the following two functions associated
with D :

so() = { infyele, 2 ult), x€lmiq,m], i=1,...,k

u(x;), r=ux;, i=0,1, - k;
SUDerp, oy U(E), T €lrii,aif, i=1,...k
vo(2) = { u(a:l)t,e] v r=ux; 1=0,1,---k;

By hypothesis, we have:

k
I—pn <> ulz) (wi—zi1) <1 +pn.
=1

Then, keeping fixed z; for ¢ > 2, and taking the suprema as z; varies,
we get

x1 + Xg

IT—pn <Y u(z) (@ — zio1) + vo( 5

i>2

) (xl —1‘0) < I+pn

Now, we repeat the same procedure, keeping fixed z; for ¢« > 3, and so
on, until we obtain

b
I—pné/ vo(t) dt < I+ py,.

Similarly we can get

b

and hence
b
/ vo(t) dt — I < py,

b
[,/ so(t) dt < pn,

from which we obtain
b
|*/ u(t) dt — I < pn,
b
I*/ u(t) dt — 1| < pp,

b b
/ u(t) dt—*/ u(t) dt < 2 p,.
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By arbitrariness of D, we find that

*/: u(t) dt =. /ab u(t) dt = 10,

Theorem 3.6 Let u : [a,b] — R be Riemann-integrable. Then, u is
Mengoli-Cauchy integrable, and

b b
(MC) — / u(t) dt = (R) — / u(t) dt.

Proof: Fix arbitrarily s € S, and v € V,,_,. Choose a division D* =
{co,c1,...,en_1}, such that both s and v are constant in |¢;_1, ¢;[, V 7,
and put M = sup,¢j,; u(z). Fix n € IV, and consider a division
D = {xg,21,..., x4}, such that §(D) < L. Let z; be in [z;_1,2;].
Now define the step function 6 : [a,b] — R by setting

w(z), fz € lximg, 2], i=1,2,...,k
0(z) =
u(b), if z = b.

If z € [x;—1,%;] Clej—1, ¢;j[ for some suitable j, then we have:

(@) ~ (@) = Jule) - u(z)]| < [ule) - s(@)] + [s(2) — ulz)]| <
< v@)+ s [ufe) - s(@)] <2 0().

€[z _1,24)
Ifx € [mi_l,xi] ¢}Cj_1,Cj[ A 7 then
u(e) = 0(x)] < |u(z)] +[0(x)] <2 M.
So,

Thus, we get:

b n
0 < sw (B [ u@)do- Y e )| <

§(D)<4 i=1

IN

b
1
2/ v(z)de+2 N — M.
“ n



By arbitrariness of v and (R)-integrability of u — s, we obtain:

n

b
0 < (o)—limsup sup \(R)—/ u(z) dm—z w(z)(z; —zi21)| <

n—+oo  §(D)<+ i=1

b
1
2 inf /v(:z:)der(o)— lim 2N - M=

vEVy, s n—-+00 n

IN

2 /ab lu(x) — s(2)] da = 2 /ab w(z) do — 2 /ab s(x) da.

By arbitrariness of s and (R)-integrability of u, we get:

n

b
0 < (o)—limsup sup [(R)— / u(zx) do — Z u(z)(x; —z21)| <
n—too §(D)<i a =1

IN

b b
2 / u(x) de —2 sup / s(z) de = 0.

SES,
So,

n

b
(0)— lim  sup [(R)— / u(z) dr — Z w(zi)(zi — xi1)| =0

nteo (D)< % i=1

uniformly with respect to the z;. O

4 Bochner-type integrals of real-valued func-
tion.

With the same notations as in the previous section, if Ry = IR, and
R = R; = Rj3 is a Dedekind complete Riesz space, we can formulate
the definition of convergence in measure and develop our theory in a
way, which is somewhat different from the one in [3].

In [3], definitions of convergence in measure, integral, and so on were
introduced; here, we give other definitions of ” convergence in measure”,
”integral”, etc. and compare them with the former.

Definition 4.1 Let X be any set, i : A — R a positive finitely addi-
tive set function. We say that a sequence (f,), of extended real-valued
functions, defined on X, (0)-converges in measure to f if

(0) —tim u({z € X : |fale) — f(&)] > £}) =0, ¥ & > 0;
n
(B)-converges in measure to f if there exist two sequences (pn)n, (¢n)n, B

pn 10, IR>q, |0, such that

p{z € Xt [fulz) — f(2)| > an}) < pn, VR €N
(see [3]).



Definition 4.2 Let (f, : X — ]7%)“ be a sequence of simple functions.
We say that (f,)n is equiintegrable if

- / ful di € R, (1)
n Jx

and

(0) —lim sup ( /A |.fil du) =0, (2)

whenever (o) —limg p(Ag) = 0.

Now, we compare (B)-convergence in measure with (o)-convergence
in measure. We begin with the following:

Definition 4.3 Let R be any Riesz space, and let u € R, u > 0.
We say that u has the Egoroff property if, for each double sequence
(Un,k)n,k In R, satisfying w > upp | 0 (K — 400, n = 1,2,...),
there exists a sequence (v,,), in R, v, | 0, with the property that, for
all n € IN, there exists k = k,, € IV, such that u, r, < vy,.

We say that a Riesz space R has the Egoroff property (or is Egoroff )
if every positive element of R has the Egoroff property.

We note that, if ¥ is any finite or countable set, then IR” is Egoroff,
but, if the cardinality of ¥ is greater or equal to ¢, then IR is not Ego-
roff. Moreover, if R = LP()\), where 0 < p < oo, and A is a countably
additive o-finite real-valued measure, then R is Egoroff. Furthermore,
every solid subspace of an Egoroff space R is Egoroff too (see also [14]).
The following result gives the comparison announced:

Theorem 4.4 Let p: A — R be a positive finitely additive set func-
tion. If (fn : X — IR), (B)-converges in measure to f € IR,
then (fn)n (0)-converges in measure to f.

Moreover, if u(X) has the Egoroff property, and (fn)n (0)-converges
in measure to f, then (fn)n (B)-converges in measure to f.

Proof: We begin with proving the first part of the assertion. Fix e > 0,
and let (p,), and (¢n), satisfy the definition of (o0)-convergence in
measure. Then, there exists a natural number 7i(e) such that ¢, <
e, Vn >mn, and so

p{z € X o [fn(z) = f(@)] > €}) < p({z € X : [fu(z) — f(2)] > gn}).
w(X) ifn<7n(e)

Define 1y, = ry,(g)

pn A (X)), if n>n(e).



Thus, for every n € IN, we have:

p{z e X [fu(x) = f(2)] > €}) <7 0.

Now, we prove the second part. By hypothesis, there exists a double
sequence (T k)nks B Tnp | 0 (k— +o0, n=1,2,...) such that

w{z € X : |fu(z) — f@)] > %}) < g Yk € IV,

Put upr = rap A p(X), V n,k. Of course, un, i < pu(X) for ev-
ery n,k, and up g | 0 (k — 400, n = 1,2,...). As u(X) has the
Egoroff property, then there exists a sequence (vn)n, v, | 0, such
that, Vn, 3k =Fk(n) € IN : tup j(n) < Un-

[L(X)\/Ul, 1f1§k§k1
For k € IN, set p,, =
Un,s if bk, <k <kpp1, nelN.

1, f1<k<k
Moreover, put g =
L ifky <k <kpp1, neN.

It is easy to check that

p{z € X2 |fi(z) = f(@)] > an}) <pr, VE €N,

and pg, qx | 0. So, the theorem is completely proved.

Definition 4.5 A sequence (f,), of measurable functions is said to
be Cauchy in measure if

(0) =lim p({z € X : |fn(2) = frip(2)| > €}) =0

uniformly with respect top € IN, Ve > 0.

Definition 4.6 A sequence (f,) of simple functions converges in L*
to the simple function f if

(0) —lim /X |fn— fl du=0.



Convergence in L' can be characterized as follows:

Proposition 4.7 Let f,, and f be as above. Then, (f,), converges in
L' to f if and only if

(0)—liy/4fndu=/4fdu

uniformly with respect to A € A.

Proof: The "only if” part is easy.
We now turn to the "if” part. By hypothesis, there exists a sequence
(Pn)n, R > pn |0, such that

|/ fndu—/ fdul <pn,, VnelN,VAecA
A A

For each n € IN, let A, = {x € X : fp,(x) > f(x)}. We have:

Joire=stdu= [ = pdut [ (=) dn

n

A,
:|/ fndu*/ fdu|+|/ fdu*/ Fo dul < 2 o,
An A, Anc Anc

that is the assertion. O
Definition 4.8 A sequence (f,) of simple functions is Cauchy in L'
if
O =tim [ 1fy = Fuil de =0
uniformly with respect to p € IN.
Analogously as in Proposition 4.7, one can prove the following:

Proposition 4.9 Let (f,)n be as above. Then, (fn)n is Cauchy in
L' if and only if the sequence (fA frn di)p is Cauchy uniformly with
respect to A € A.

Definition 4.10 Under the same notations as above, a map f is said
to be integrable if there exists a sequence (f, )y of simple functions,
convergent in measure to f and Cauchy in L'. In this case, we define

/fduz(o)—lim/ fndu, VAc A
A noJa
Definition 4.11 If f is integrable, put
/fduz(o)— lim fndu, VAeA,
A n—oo A

where (f,,), is a sequence of simple function, convergent in measure to
f and Cauchy in L'.



Now, we prove that the integral in 4.11 is well-defined.

Theorem 4.12 Let f be an integrable function, and (f,)n as in 4.11.
Then the limit (0) —limy oo [, fn dp exists uniformly with respect
to A € A and does not depend on the choice of (fy,)n.

Proof (see also [11]): Let (f}), , (f2). be two sequences of simple
maps, convergent in measure to the same limit f and Cauchy in L'.
Then, there exists (¢%),, R 3 ¢% | 0, such that

I/fﬁdu*/fﬁﬁdMIS/ fi—fldp<d <a+a (i=1,2),
A A X

VnelN,Vm>n, VAecA

As R is Dedekind complete, then the sequences ([, fi du)n (i =
1,2) are (o)-convergent, uniformly with respect to A € A. We denote
by I; (A) their (o)—limits. For every A € A, let P,(A) = [, pn dp,
where p,, (x) = |fL(x)— f2(z)|, V= € X. The sequence (p,), converges
in measure to 0, and it is easy to see that (P, (A)), is Cauchy uniformly
with respect to A; then, (o) — lim,, P,(A) exists in R, uniformly with
respect to A € A : we denote this limit by P(A). As the integral of
simple functions is absolutely continuous, we have that

[(0) — li}gn w(Eyr) =0 = [(0) — lilgn P,(Ey) =0, Vne N

Now, we prove that (o) — limy P(Fj) = 0. Fix arbitrarily n,k € IN.
Then, there exist some sequences in R, (tn)n, (Tn,k)nk, such that
tn 1 0, 7n i li O for all fixed n € IN, and

|P(Ek:) - Pn(Ek)l S trm Pn(Ek) S Tn,ky v ’I’L,k‘.
Thus, V n € IN, we have:

0< (o) ~limsup (P(Ey)) < (0) — limsup [P(Ey) — Pu(E)l+

+(0) - limsup (Pn(Ek)) <tn+ lef Tnk = ty.
. .
By arbitrariness of n, we get (o) — limy (P(Ey)) = 0.

By convergence in measure of (p,), to 0, for every fixed ¢ > 0 and
n € IN, we have:

0 < PX)=P{zeX:pulx)>e})+ [Pz e X :pu(z)<e})—P.({x € X :py(x) <e})] +
+ P({x e X :pp(x) <e}) <uvp+w, +e p(X),

for some suitable sequences (v, )n, (wp), in R, such that v, | 0 | w,.
Taking the infima with respect to n, and by arbitrariness of e, we
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obtain P(X)=0. As0< P,(A) < P, (X)VneIN, VAec A, we get:
P(A)=0,VAecA So,VnelIN, VAe A, we get:

sup [0(4) =~ () < | [ 7} du= ()] +112(4) = [ £ dul+

+|/fiduf/fZdulSan+bn+/pndu§an+bn+cm
A A A

for some suitable sequences (an)n, (bn)n, (¢n)n, an 10, by 1 0, ¢, | 0.
Taking the infima, we get:

sup [l1(A) = 12(A)| < inf (an + by +cn) =0.
A n

Thus, I;(A) = lo(A), V A€ A O

Remark 4.13 It is readily seen that the integral introduced in 4.11
is a linear monotone functional and a finitely additive set function.

Lemma 4.14 Under the same notations as above, let f be an inte-
grable function, and (f,)n a sequence of simple function, convergent
in measure to f and Cauchy in L'. Then,

—hm/ — fldup=0.

Proof: As (f,), is Cauchy in L', there exists a sequence (y)n, R 3
Yn | 0, such that

/ |fn_fm‘dﬂ§yn-
X

Fix n € IN. As (fm)m converges in measure to f, then (|fn, — fiml)m
converges in measure to |f, — f|. Moreover, it is easy to check that
(Ifn = fml)m is Cauchy in L!. So,

[ b= =) =tim [ (.~ £l dn
A moJa
uniformly with respect to A € A, and thus

/ o — 1 di < g,
X

that is the assertion. O

Lemma 4.15 Let f be an integrable function, and let (Anx), oIV ren
be a family of subsets of X, such that

(0) — lim <s1;p M(AM)) =0.
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Then,

(o) — liyan (sl/l\p /A,M |f] d,u) = 0.

Proof: Let (fh)heﬂ\f be as in Lemma 4.14. There exist some sequences
(zn)n, (dp)n, R > 2, | 0, R > d, | 0, and there exists some real
numbers v, h € IN, such that, for all n, k, A\, we have:

/ Ifldué/lf—fhldu+/ Ful di < dn + vn 0,
An,)\ X

An,)\

and hence

sup / If] dp < dp + vp 2n;
AEA Anx

thus

0 < (o) —limsup (sup / | d,u) < dp+(0o)—limsup vp, zn, YV h
n AEA Ana n

and therefore

n

(0) — lim (sup / |f] du) =0.0
n XeA JA,

We now state the following;:

0 < (o) — limsup (sup / |f] d,u) <inf dj =0,
AEA Anx h

that is

Theorem 4.16 Let (f,), be a sequence of simple functions of RX,
convergent in measure to f € RX. Then, the following are equivalent:

4.16.1.) (fn)n is Cauchy in L'
4.16.2.) f is integrable and (f,)n converges in L* to f.
4.16.3.) sup, [y fn dp€ R; and

(0) — lim lsup< sup / | fml du) 1 =0,
n A m2>n JA,

for every family (Anx),c IV rea Of subsets of X, such that

(0) —lim <SIA1p M(An,A)) =0.
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4.16.4.) (o) —lim, sups, f{IGX;|fk(r)|>n} |fx] du = 0.

Proof: We observe that we will use convergence in measure only in or-
der to prove the implications [4.16.1.)] => [4.16.2.)] and [4.16.3.)] =
[4.16.1.)].

[4.16.1.)] = [4.16.2.)] : See Definition 4.10 and Lemma 4.14.
[4.16.2.)] = [4.16.3.)] : Fix A € A, n,m € IN, with m > n. By virtue
of Lemma 4.15, we have:

/A ol di < [ 17 = il det

+/ [f] dp < s+ en < 8p + €n,
A

n,

for some suitable sequences (s,), and (ey)n, R s, |0, R>e, | 0.
So,

A m>n

sup (sup / |fm|du><sn—|—en,‘7n€l7\/'7
Anx

and therefore

(0) — lim [sup <sup / | fm] du)] =0.
n A m2n J A, \

By proceeding analogously, it is easy to prove that

sup / fn dp € R.
n Jx

[4.16.3.)] = [4.16.4.)] : For every n,k € IN, let A, = {x € X :
|fx(x)| > n}. Then, there exists r € R, such that

rz/X |fk|dl~LZ/A

Thus, p(A,x) < . So,

| fil dMZ/ ndp=n p(A,x).
k Ank

n,k

O ~tim [ fuyl du=0
n Ak

uniformly with respect to k and p € IN. Therefore,
(0) — lim (sup / | fxl du) =0.
n k>n JA, &
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(see also [8]) [4.16.4.)] = [4.16.3.)] : Let A, i (n,k € IN) be as in the
previous step. For each n € IN, and for every k € IN, with k£ > n, one
has:

/ \fk|du=/ |fk|du+/ el dit < an + 1 (X)),
X XNAnp XnAg ,

where «,, is a suitable decreasing sequence in R, with inf, «, = 0.
Taking n = 1, we get:

/ el di < g + p(X) ¢
X

SO

sup [ Ifilduc R
X

E>1
Let now (Ey, )n,a be such that (o) — lim,, supy p(En,n) = 0. Then,
VAeA VhnkelIN, with k> n, and k > h, we have:

/ il dp = / il dut / el dit < prth (B ) < puh o,
En)\ En,AﬂA;L’ En’)\ﬂ z,k

for two suitable sequences (pp)n, and o, in R, such that pp | 0 | oy,.
Therefore, for every k > n, we get:

sup (sup / | fx d,u) < pn+h o,.
A k>n E,x

Thus,

n A k>n

0 < (0o)—limsup [sup ( sup / | fxl du)] < pp+h inf o, = pp, V h.
En,)\ n

By arbitrariness of h, we get:

0 < (o) — limsup |ﬁup (sup / | fl du)] <inf p, =0.
n A k>n JE, h

Hence,
(0) — lim [sup ( sup / | fl du)} =0.
n x \ k>n JE, .

[4.16.3.)] = [4.16.1.)] : Fix € > 0. As (fn)n converges in measure
to f, then (f,)n is Cauchy in measure. So, there exists a sequence

14



(20)n, 2n | 0, such that, for each n € IN, ¥V m > n, pu(Anm) < 2n,
where A, ., = {x € X : |f(x) — fm(z)] > €}. By 4.16.3.), we have

[ Mldnst, Vae N vmzn

n,m

for a suitable sequence (t,)n, tn | 0. Thus, Vn e IN, Vm >n:

ot tuldn = [ A aldut [ g gl dn <

n,m

eu(X)+/ Ifnldwr/ ol it <

n,m An,m

IA

< e pu(X) +tn + wy,

for some suitable sequences t,, | 0, w, | 0. So, the assertion follows.
O

A consequence of Theorem 4.16 is the following:

Corollary 4.17 With the same hypotheses and notations as above, let
f € RX be an integrable function. Then there exists an equiintegrable
sequence (fn)n of simple functions, convergent in measure to f.

We will prove the following theorem, which is the converse of Corollary
4.17:

Theorem 4.18 If f € RX is such that there exists an equiintegrable
sequence (fn)n of functions, convergent in measure to f, then f is

integrable, and
/ fdu:hm/ fu d.
X n e

Now we compare the integral introduced in 4.11 with the (B)-integral
introduced in [3], and the ”monotone integral” introduced in [4].

Definition 4.19 Under the same notations as above, a map f is said
to be (B)-integrable if there exists a sequence (s, ), of simple functions,
satisfying 4.16.3.) and (o)-convergent in measure to f. In this case, we
define

(B)—/ f dp = (o) — lim / sn dp, VA € A.
A n A
The following result is a consequence of 4.4 and 4.16.

Theorem 4.20 Let R be a Dedekind complete Riesz space. Then,
every (B)-integrable function f is integrable too. Moreover, if R is
Egoroff, [ is integrable if and only if it is (B)-integrable.
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Theorem 4.21 If f : X — IR is bounded measurable, then fX fdp=
(M) — [x fdp.

Proof: First of all, we note that the quantity at the right side exists
in R, by construction.
Without loss of generality, we may suppose that f is nonnegative.
If f is simple, the assertion is immediate. Now, let L = sup,cx f(z),
and (s;), be as the functions g, in Proposition 3.11. of [4]. For every
n € IN and z € X, it is:

L

sn(x) < f(z) < sp(x) + o0

So, the sequence (s;,), converges uniformly to f. Then

(0)~1lim /X . dp = (0)~lim (M)—/X su du = sup (M)f/

X

We observe that the monotone integral satisfies Lemma 4.15 (see also
[4]); thus, it follows that (s, ), converges in measure to f and satisfies
4.16.3.); so, by Theorem 4.16, we can conclude that f is integrable and

fX fdM:(M)_fX fdp. O

Theorem 4.22 Let f : X — IR be a measurable map. Then, the
following are equivalent:

1.) There exists an equiintegrable sequence of simple functions (sp)n,
convergent in measure to f.

2.) f is (M)-integrable.
3.) f is integrable.
Proof. (see also [5]) Without any restriction, we can suppose that

f is nonnegative.

[1.)] = [2.)] : Let (sy)n satisfy [1.)]. Then, by Theorem 3.23. of [4]
[Vitali ’s theorem)], it follows that f is integrable, and

| ran=@=tm [ soau= )~ [ ran

[2.)] = [3.)] : Assume that f is (nonnegative and) (M )-integrable,
and let (s,)n, be as in Proposition 3.11. of [4]. Then (s,), is an
(increasing) sequence of simple functions, convergent in measure to f
and satisfying 4.16.3.), because Lemma 4.15 holds for the (M )-integral.
Thus, f is integrable.

[3.)] = [1.)] : Straightforward.
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Now, when X is a Banach lattice, it is possible to compare the integral
defined in 4.11 with the Bochner integral. The following result holds:

Theorem 4.23 Let R be a Banach lattice, p: A — R be an s-bounded
finitely additive measure, f : X — IR be a map. Then, f is integrable
if and only if f is Bochner integrable.

Proof: We denote by v a control for u. If f is integrable, then there
exists a sequence (s,), of simple functions, converging in measure to
f and uniformly integrable.

Thus, [ f, du < m < v, uniformly with respect to n. By Theorem
2.5. of [5], f is Bochner integrable.

Conversely, let f be Bochner integrable. Without any restriction, we
may assume that f is nonnegative. Then, there exists a sequence (f;, )
of simple functions, 0 < f,, < f, converging in measure to f. Then we
have:

/ fn dp < (Bochner) —/ fdu < p.
X X

So, integrability of f follows. O
Hence, in Banach lattices, the Bochner and the monotone integral co-
incide.

Let now R be a Dedekind complete Riesz space: by Maeda-Ogasawara-

Vulikh representation theorem (see also [1]), there exists a compact
extremally disconnected topological space 2 such that R can be em-
bedded as a solid subspace of Coo(2) = {f : @ — R : f is continuous,
and {w € Q: |f(w)| = +oo} is nowhere dense in }.
Now, let u : [a,b] — R be a Riemann integrable map. Then, there
exists a nowhere dense set N C Q such that the map ¢ — wuy(t),
defined by setting wu,,(t) = u(t)(w), is real-valued and bounded. We
observe that, for each function s € S,, for every w ¢ N, the map
S, (t) = s(t)(w) is a step function, and

S(Hw) < ult)w), ¥t € [a,b].

So we get, up to the complement of a meager set:

( / ") dt) () = ng ( /ab S(t) d’f)](“’)%i%i / Dty di = . / () (@) ar:
( / "t dt) () = [nvf < /ab o(t) dt)](w)zzeil‘gfw /: Aty dt = /ab u(t)(w) dt;
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that is, u,, is Riemann-integrable, and

<./ab u(t) dt) (w) = /ab u(t)(w) dt.

Remark 4.24 By proceeding as above, we have that, if R = B(D) =
{f € R” : f is bounded }, where D is an arbitrary set, then

b b
(/ u(?) dt) (d) :/ u(t)(d) dt ¥ d € D.

Endow now D with the discrete topology, let R = C(BD)={f¢€

IRPP . f is continuous }, and u : [a,b] — R’ be a Riemann-integrable
function: then, the map £ — (f: u(t) dt)(€) is the (unique) continuous

extension to the whole of 5 D of the map d — (f; u(t) dt)(d), and thus
it is equal to the Chojnacki-integral of the map u, where the chosen
retraction r : 3 D — [ D is the identity (see also [2], [7]).
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