Comparison between different types of abstract integrals in Riesz spaces

Antonio Boccuto Anna Rita Sambucini *

Abstract

A comparison among different types of integral in Riesz spaces is given.

A.M.S. Classification: 28A70.

1 Introduction.

In a previous paper (see [4]), we introduced a "monotone-type" integral for extended-real valued maps, with respect to Riesz-space-valued finitely additive function (see also [9]), [12]). More precisely, given a mean $\mu : \mathcal{A} \to R$ and a measurable function $f : X \to \widetilde{\mathbb{R}}_0^+$, we say that f is integrable in the monotone sense, or (M)-integrable, if there exists in R the

$$(o) - \lim_{a \to +\infty} \int_0^a u(t) dt$$

where $u(t) \equiv \mu(\{x \in X : f(x) > t\}) dt$, $\forall t \in \mathbb{R}^+$, and the integral is intended as a Riemann-type integral.

In this paper, firstly we show that the Riemann integral is equivalent to the Mengoli-Cauchy integral, and after we compare the monotone integral with other types of integrals.

In particular, we introduce a Dunford-Schwartz-type integral (see also [11]), similar to the one introduced in [3], but with some differences, and we prove that it coincides with the monotone integral, by virtue of the Vitali-type theorem for the (M)-integral given in [4].

^{*}Dep. of Mathematics, via Vanvitelli,1 - PERUGIA(ITALY) E-mail:TIPO@IPGUNIV.BITNET , MATEARS@IPGUNIV.UNIPG.IT Lavoro svolto nell' ambito dello G.N.A.F.A. del C.N.R.

Furthermore, some comparisons with pointwise-type integral and Chojnacki-integral are investigated.

Our thanks to Prof. D. Candeloro for his helpful suggestions.

2 Preliminaries.

Definition 2.1 Let X be any set, R a Dedekind complete Riesz space, $\mathcal{A} \subset \mathcal{P}(X)$ an algebra. A map $\mu : \mathcal{A} \to R$ is said to be a *mean* if $\mu(A) \geq 0$, $\forall A \in \mathcal{A}$, and $\mu(A \cup B) = \mu(A) + \mu(B)$, whenever $A \cap B = \emptyset$. A mean μ is *countably additive* (or σ -additive) if $\mu(\cap_n A_n) = \inf_n \mu(A_n)$, whenever $(A_n)_n$ is a decreasing sequence in \mathcal{A} , such that $\cap_n A_n \in \mathcal{A}$.

Definition 2.2 A net $\{x_{\alpha}\}_{\alpha \in \Lambda}$ is said to be (*o*)-convergent (or simply convergent) if there exist in *R* the quantities

$$(o) - \limsup_{\alpha \in \Lambda} x_{\alpha} \equiv \inf_{\alpha} \sup_{\lambda \ge \alpha} x_{\lambda}$$

and

$$(o) - \liminf_{\alpha \in \Lambda} x_{\alpha} \equiv \sup_{\alpha} \inf_{\lambda \ge \alpha} x_{\lambda},$$

and they coincide;

convergent to x if $x = (o) - \limsup_{\alpha \in \Lambda} x_{\alpha} = (o) - \liminf_{\alpha \in \Lambda} x_{\alpha}$; in this case, we write $(o) - \lim_{\alpha \in \Lambda} x_{\alpha} = x$, and say that x is the (o)-limit of $\{x_{\alpha}\}$.

Definition 2.3 A net $\{x_{\alpha}\}_{\alpha}$ is said to be (*o*)-*Cauchy* (or simply *Cauchy*) if

$$\limsup_{\alpha, \beta} |x_{\alpha} - x_{\beta}| = 0.$$

Definition 2.4 A Riesz space R is called $[\sigma]$ -Dedekind complete if every [countable] subset of R, bounded from above, has supremum in R.

The following result justifies the above definition:

Proposition 2.5 Let R be a Dedekind complete Riesz space. Then, a net in R is convergent if and only if it is Cauchy (see also [15]).

3 An equivalent definition of Riemann-integral for Riesz-space-valued functions.

In [4] we defined the integral $\int_0^a u(t) dt$ as a Riemann - type integral. This integral can be defined also as a "Mengoli-Cauchy" type integral. We will show that the "Riemann"-integral and the "Mengoli-Cauchy"integral coincide. **Definition 3.1** Given an interval $[a, b] \subset \mathbb{R}$, we call division of [a, b]a finite set $\{x_0, x_1, \ldots, x_n\} \subset [a, b]$, where $x_0 = a, x_n = b$, and $x_i < x_{i+1}, \forall i = 0, \ldots, n$. We call mesh of D the quantity $(\delta(D)) \equiv$ max_i $(x_{i+1} - x_i)$. We say that $D_1 \geq D_2$ if $\delta(D_1) \leq \delta(D_2)$.

We now recall the definition of "Riemann-integral" given in [4].

Definition 3.2 Let R be a Dedekind complete Riesz space, and $u : [a,b] \to R$ a bounded map. We call *upper integral* [resp. *lower integral*] of u the element of R given by

$$\inf_{v \in V_u} \int_a^b v(t) dt \quad [\sup_{s \in S_u} \int_a^b s(t) dt],$$

where

$$\begin{array}{ll} V_u &\equiv & \{v: v \text{ is a step function }, \ v(t) \geq u(t), \ \forall \ t \in [a, b] \} \\ S_u &\equiv & \{s: s \text{ is a step function }, \ s(t) \leq u(t), \ \forall \ t \in [a, b] \}. \end{array}$$

We say that a bounded function $u : [a, b] \to R$ is *Riemann-integrable* (or (R)-*integrable*), if its lower integral coincides with its upper integral, and, in this case, we call *integral of* u (and write $\int_a^b u(t) dt$) the common value of them. We also indicate it by

$$(R) - \int_a^b u(t) \ dt.$$

Definition 3.3 Let $[a, b] \subset \mathbb{R}$, R be as above, and $u : [a, b] \to R$ be a map. We say that u is *Mengoli-Cauchy integrable* ((MC)-*integrable*) if there exists an element $I \in R$ and a sequence $(p_n)_n, p_n \downarrow 0$, such that,

$$\sup_{\delta(D) \le \frac{1}{n}} \left| \sum_{i=1}^{k} u(z_i)(x_i - x_{i-1}) - I \right| \le p_n, \ \forall \ z_i \in [x_{i-1}, x_i] \ (i = 1, \dots, k),$$

and we write $(MC) - \int_a^b u(t) dt \equiv I$.

The following result holds:

Theorem 3.4 With the same notations as above, let $u : [a, b] \rightarrow R$ be Mengoli- Cauchy integrable. Then u is bounded.

The proof is straightforward.

Theorem 3.5 Let $u : [a,b] \to R$ be Mengoli-Cauchy integrable. Then, u is Riemann integrable, and

$$(R) - \int_{a}^{b} u(t) \, dt = (MC) - \int_{a}^{b} u(t) \, dt.$$

Proof. Let I, $p_n \downarrow 0$ as in Definition 3.3. Let $D \equiv \{x_0, x_1, \ldots, x_k\}$ be such that $\delta(D) < \frac{1}{n}$. We consider the following two functions associated with D:

$$s_0(x) = \begin{cases} \inf_{t \in]x_{i-1}, x_i[} u(t), & x \in]x_{i-1}, x_i[, i = 1, \dots, k] \\ u(x_i), & x = x_i, i = 0, 1, \dots k; \end{cases}$$

$$v_0(x) = \begin{cases} \sup_{t \in]x_{i-1}, x_i[} u(t), & x \in]x_{i-1}, x_i[, i = 1, \dots, k] \\ u(x_i), & x = x_i, i = 0, 1, \dots k; \end{cases}$$

By hypothesis, we have:

$$I - p_n \le \sum_{i=1}^k u(z_i) (x_i - x_{i-1}) \le I + p_n.$$

Then, keeping fixed z_i for $i \ge 2$, and taking the suprema as z_1 varies, we get

$$I - p_n \le \sum_{i \ge 2} u(z_i) (x_i - x_{i-1}) + v_0(\frac{x_1 + x_0}{2}) (x_1 - x_0) \le I + p_n.$$

Now, we repeat the same procedure, keeping fixed z_i for $i \ge 3$, and so on, until we obtain

$$I - p_n \le \int_a^b v_0(t) \, dt \le I + p_n.$$

Similarly we can get

$$I - p_n \le \int_a^b s_0(t) \, dt \le I + p_n$$

and hence

$$\int_{a}^{b} v_{0}(t) dt - I \leq p_{n},$$
$$I - \int_{a}^{b} s_{0}(t) dt \leq p_{n},$$

from which we obtain

$$\begin{aligned} |^* \int_a^b & u(t) \, dt - I| \le p_n, \\ |_* \int_a^b & u(t) \, dt - I| \le p_n, \\ ^* \int_a^b & u(t) \, dt -_* \int_a^b & u(t) \, dt \le 2 \, p_n. \end{aligned}$$

By arbitrariness of D, we find that

*
$$\int_{a}^{b} u(t) dt =_{*} \int_{a}^{b} u(t) dt = I \Box.$$

Theorem 3.6 Let $u : [a,b] \to R$ be Riemann-integrable. Then, u is Mengoli-Cauchy integrable, and

$$(MC) - \int_{a}^{b} u(t) dt = (R) - \int_{a}^{b} u(t) dt.$$

Proof: Fix arbitrarily $s \in S_u$ and $v \in V_{u-s}$. Choose a division $D^* \equiv \{c_0, c_1, \ldots, c_{N-1}\}$, such that both s and v are constant in $]c_{j-1}, c_j[, \forall j,$ and put $M \equiv \sup_{x \in [a,b]} u(x)$. Fix $n \in \mathbb{N}$, and consider a division $D \equiv \{x_0, x_1, \ldots, x_k\}$, such that $\delta(D) \leq \frac{1}{n}$. Let z_i be in $[x_{i-1}, x_i]$. Now define the step function $\theta : [a,b] \to R$ by setting

$$\theta(x) = \begin{cases} u(z_i), \text{ if } x \in [x_{i-1}, x_i[, i = 1, 2, \dots, k] \\ u(b), \text{ if } x = b. \end{cases}$$

If $x \in [x_{i-1}, x_i] \subset]c_{j-1}, c_j[$ for some suitable j, then we have:

$$\begin{aligned} |u(x) - \theta(x)| &= |u(x) - u(z_i)| \le [u(x) - s(x)] + |s(x) - u(z_i)| \le \\ &\le v(x) + \sup_{x \in [x_{i-1}, x_i]} [u(x) - s(x)] \le 2 v(x). \end{aligned}$$

If $x \in [x_{i-1}, x_i] \not\subset]c_{j-1}, c_j[\forall j, \text{then}$

$$|u(x) - \theta(x)| \le |u(x)| + |\theta(x)| \le 2 M.$$

So,

$$\begin{aligned} |(R) - \int_{a}^{b} u(x) \, dx - \sum_{i=1}^{n} u(z_{i})(x_{i} - x_{i-1})| &= |(R) - \int_{a}^{b} u(x) \, dx - \int_{a}^{b} \theta(x) \, dx| \leq \\ &\leq \int_{a}^{b} |u(x) - \theta(x)| \, dx \leq 2 \int_{a}^{b} v(x) \, dx + 2 N \frac{1}{n} M. \end{aligned}$$

Thus, we get:

$$0 \leq \sup_{\delta(D) \leq \frac{1}{n}} |(R) - \int_{a}^{b} u(x) \, dx - \sum_{i=1}^{n} u(z_{i})(x_{i} - x_{i-1})| \leq \\ \leq 2 \int_{a}^{b} v(x) \, dx + 2 N \frac{1}{n} M.$$

By arbitrariness of v and (R)-integrability of u - s, we obtain:

$$0 \leq (o) - \limsup_{n \to +\infty} \sup_{\delta(D) \leq \frac{1}{n}} |(R) - \int_{a}^{b} u(x) \, dx - \sum_{i=1}^{n} u(z_{i})(x_{i} - x_{i-1})| \leq \\ \leq 2 \inf_{v \in V_{u-s}} \int_{a}^{b} v(x) \, dx + (o) - \lim_{n \to +\infty} 2 N \frac{1}{n} M = \\ = 2 \int_{a}^{b} [u(x) - s(x)] \, dx = 2 \int_{a}^{b} u(x) \, dx - 2 \int_{a}^{b} s(x) \, dx.$$

By arbitrariness of s and (R)-integrability of u, we get:

$$0 \leq (o) - \limsup_{n \to +\infty} \sup_{\delta(D) \leq \frac{1}{n}} |(R) - \int_{a}^{b} u(x) \, dx - \sum_{i=1}^{n} u(z_{i})(x_{i} - x_{i-1})| \leq \\ \leq 2 \int_{a}^{b} u(x) \, dx - 2 \sup_{s \in S_{u}} \int_{a}^{b} s(x) \, dx = 0.$$

So,

$$(o) - \lim_{n \to +\infty} \sup_{\delta(D) \le \frac{1}{n}} |(R) - \int_a^b u(x) \, dx - \sum_{i=1}^n |u(z_i)(x_i - x_{i-1})| = 0$$

uniformly with respect to the z_i . \Box

4 Bochner-type integrals of real-valued function.

With the same notations as in the previous section, if $R_1 = \mathbb{R}$, and $R \equiv R_2 = R_3$ is a Dedekind complete Riesz space, we can formulate the definition of convergence in measure and develop our theory in a way, which is somewhat different from the one in [3].

In [3], definitions of convergence in measure, integral, and so on were introduced; here, we give other definitions of "convergence in measure", "integral", etc. and compare them with the former.

Definition 4.1 Let X be any set, $\mu : \mathcal{A} \to R$ a positive finitely additive set function. We say that a sequence $(f_n)_n$ of extended real-valued functions, defined on X, (o)-converges in measure to f if

 $(o) - \lim_{n} \mu(\{x \in X : |f_n(x) - f(x)| > \varepsilon\}) = 0, \ \forall \ \varepsilon > 0;$

(B)-converges in measure to f if there exist two sequences $(p_n)_n, (q_n)_n, R \ni p_n \downarrow 0, \mathbb{R} \ni q_n \downarrow 0$, such that

$$\mu(\{x \in X : |f_n(x) - f(x)| > q_n\}) \le p_n, \ \forall \ n \in \mathbb{N}$$

(see [3]).

Definition 4.2 Let $(f_n : X \to \widetilde{\mathbb{R}})_n$ be a sequence of simple functions. We say that $(f_n)_n$ is *equiintegrable* if

$$\sup_{n} \int_{X} |f_{n}| d\mu \in R, \tag{1}$$

and

$$(o) - \lim_{n} \sup_{k \ge n} \left(\int_{A_n} |f_k| \ d\mu \right) = 0, \tag{2}$$

whenever $(o) - \lim_k \mu(A_k) = 0.$

Now, we compare (B)-convergence in measure with (o)-convergence in measure. We begin with the following:

Definition 4.3 Let R be any Riesz space, and let $u \in R$, $u \ge 0$. We say that u has the *Egoroff property* if, for each double sequence $(u_{n,k})_{n,k}$ in R, satisfying $u \ge u_{n,k} \downarrow 0$ $(k \to +\infty, n = 1, 2, ...)$, there exists a sequence $(v_n)_n$ in R, $v_n \downarrow 0$, with the property that, for all $n \in \mathbb{N}$, there exists $k = k_n \in \mathbb{N}$, such that $u_{n,k_n} \le v_n$. We say that a Biesz space R has the *Egoroff property* (or is *Egoroff*).

We say that a Riesz space R has the *Egoroff property* (or is *Egoroff*) if every positive element of R has the Egoroff property.

We note that, if Σ is any finite or countable set, then \mathbb{R}^{Σ} is Egoroff, but, if the cardinality of Σ is greater or equal to c, then \mathbb{R}^{Σ} is not Egoroff. Moreover, if $R = L^{p}(\lambda)$, where $0 \leq p \leq \infty$, and λ is a countably additive σ -finite real-valued measure, then R is Egoroff. Furthermore, every solid subspace of an Egoroff space R is Egoroff too (see also [14]). The following result gives the comparison announced:

Theorem 4.4 Let $\mu : \mathcal{A} \to \mathbb{R}$ be a positive finitely additive set function. If $(f_n : X \to \mathbb{R})_n$ (B)-converges in measure to $f \in \mathbb{R}^X$, then $(f_n)_n$ (o)-converges in measure to f.

Moreover, if $\mu(X)$ has the Egoroff property, and $(f_n)_n$ (o)-converges in measure to f, then $(f_n)_n$ (B)-converges in measure to f.

Proof: We begin with proving the first part of the assertion. Fix $\varepsilon > 0$, and let $(p_n)_n$ and $(q_n)_n$ satisfy the definition of (o)-convergence in measure. Then, there exists a natural number $\overline{n}(\varepsilon)$ such that $q_n < \varepsilon$, $\forall n \geq \overline{n}$, and so

$$\begin{split} \mu(\{x \in X : |f_n(x) - f(x)| > \varepsilon\}) &\leq \mu(\{x \in X : |f_n(x) - f(x)| > q_n\}).\\ \text{Define } r_n &= r_n(\varepsilon) \equiv \\ \begin{cases} \mu(X) & \text{if } n < \overline{n}(\varepsilon) \\\\ p_n \wedge \mu(X), & \text{if } n \geq \overline{n}(\varepsilon). \end{cases} \end{split}$$

Thus, for every $n \in \mathbb{N}$, we have:

$$\mu(\{x \in X : |f_n(x) - f(x)| > \varepsilon\}) \le r_n \downarrow 0.$$

Now, we prove the second part. By hypothesis, there exists a double sequence $(r_{n,k})_{n,k}$, $R \ni r_{n,k} \downarrow 0$ $(k \to +\infty, n = 1, 2, ...)$ such that

$$\mu(\{x \in X : |f_k(x) - f(x)| > \frac{1}{n}\}) \le r_{n,k}, \ \forall \ n, k \in \mathbb{N}.$$

Put $u_{n,k} \equiv r_{n,k} \wedge \mu(X)$, $\forall n, k$. Of course, $u_{n,k} \leq \mu(X)$ for every n, k, and $u_{n,k} \downarrow 0$ $(k \to +\infty, n = 1, 2, ...)$. As $\mu(X)$ has the Egoroff property, then there exists a sequence $(v_n)_n, v_n \downarrow 0$, such that, $\forall n, \exists k = k(n) \in \mathbb{N} : u_{n,k(n)} \leq v_n$.

For
$$k \in \mathbb{N}$$
, set $p_k \equiv \begin{cases} \mu(X) \lor v_1, & \text{if } 1 \le k \le k_1 \\ v_n, & \text{if } k_n \le k \le k_{n+1}, & n \in \mathbb{N}. \end{cases}$
Moreover, put $q_k \equiv \begin{cases} 1, & \text{if } 1 \le k \le k_1 \\ \frac{1}{n}, & \text{if } k_n \le k \le k_{n+1}, & n \in \mathbb{N}. \end{cases}$

It is easy to check that

$$\mu(\{x \in X : |f_k(x) - f(x)| > q_k\}) \le p_k, \ \forall \ k \in \mathbb{N},$$

and $p_k, q_k \downarrow 0$. So, the theorem is completely proved.

Definition 4.5 A sequence $(f_n)_n$ of measurable functions is said to be *Cauchy in measure* if

$$(o) - \lim_{n} \mu(\{x \in X : |f_n(x) - f_{n+p}(x)| > \varepsilon\}) = 0$$

uniformly with respect to $p \in \mathbb{N}$, $\forall \varepsilon > 0$.

Definition 4.6 A sequence (f_n) of simple functions converges in L^1 to the simple function f if

(o)
$$-\lim_{n} \int_{X} |f_{n} - f| d\mu = 0.$$

Convergence in L^1 can be characterized as follows:

Proposition 4.7 Let f_n and f be as above. Then, $(f_n)_n$ converges in L^1 to f if and only if

$$(o) - \lim_{n} \int_{A} f_{n} d\mu = \int_{A} f d\mu$$

uniformly with respect to $A \in \mathcal{A}$.

Proof: The "only if" part is easy.

We now turn to the "if" part. By hypothesis, there exists a sequence $(p_n)_n, R \ni p_n \downarrow 0$, such that

$$\left|\int_{A} f_{n} d\mu - \int_{A} f d\mu\right| \leq p_{n}, \ \forall \ n \in \mathbb{N}, \ \forall \ A \in \mathcal{A}.$$

For each $n \in \mathbb{N}$, let $A_n \equiv \{x \in X : f_n(x) \ge f(x)\}$. We have:

$$\int_{X} |f_{n} - f| \ d\mu = \int_{A_{n}} (f_{n} - f) \ d\mu + \int_{A_{n^{c}}} (f - f_{n}) \ d\mu =$$
$$= |\int_{A_{n}} f_{n} \ d\mu - \int_{A_{n}} f \ d\mu| + |\int_{A_{n^{c}}} f \ d\mu - \int_{A_{n^{c}}} f_{n} \ d\mu| \le 2 \ p_{n}$$
eat is the assertion \Box

that is the assertion.

Definition 4.8 A sequence (f_n) of simple functions is Cauchy in L^1 if

$$(o) - \lim_{n} \int_{X} |f_n - f_{n+p}| \ d\mu = 0$$

uniformly with respect to $p \in \mathbb{N}$.

Analogously as in Proposition 4.7, one can prove the following:

Proposition 4.9 Let $(f_n)_n$ be as above. Then, $(f_n)_n$ is Cauchy in L^1 if and only if the sequence $(\int_A f_n d\mu)_n$ is Cauchy uniformly with respect to $A \in \mathcal{A}$.

Definition 4.10 Under the same notations as above, a map f is said to be *integrable* if there exists a sequence $(f_n)_n$ of simple functions, convergent in measure to f and Cauchy in L^1 . In this case, we define

$$\int_{A} f d\mu \equiv (o) - \lim_{n} \int_{A} f_{n} d\mu, \ \forall \ A \in \mathcal{A}$$

Definition 4.11 If f is integrable, put

$$\int_{A} f d\mu \equiv (o) - \lim_{n \to \infty} \int_{A} f_n d\mu, \ \forall \ A \in \mathcal{A},$$

where $(f_n)_n$ is a sequence of simple function, convergent in measure to f and Cauchy in L^1 .

Now, we prove that the integral in 4.11 is well-defined.

Theorem 4.12 Let f be an integrable function, and $(f_n)_n$ as in 4.11. Then the limit $(o) - \lim_{n \to \infty} \int_A f_n d\mu$ exists uniformly with respect to $A \in \mathcal{A}$ and does not depend on the choice of $(f_n)_n$.

Proof (see also [11]): Let $(f_n^1)_n$, $(f_n^2)_n$ be two sequences of simple maps, convergent in measure to the same limit f and Cauchy in L^1 . Then, there exists $(q_n^i)_n$, $R \ni q_n^i \downarrow 0$, such that

$$\left|\int_{A} f_{n}^{i} d\mu - \int_{A} f_{m}^{i} d\mu\right| \leq \int_{X} \left|f_{n}^{i} - f_{m}^{i}\right| d\mu \leq q_{n}^{i} \leq q_{n}^{1} + q_{n}^{2} \ (i = 1, 2),$$

 $\forall n \in \mathbb{N}, \ \forall m \ge n, \ \forall A \in \mathcal{A}.$

As R is Dedekind complete, then the sequences $(\int_A f_n^i d\mu)_n$ (i = 1, 2) are (o)-convergent, uniformly with respect to $A \in \mathcal{A}$. We denote by l_i (A) their (o)-limits. For every $A \in \mathcal{A}$, let $P_n(A) \equiv \int_A p_n d\mu$, where $p_n(x) \equiv |f_n^1(x) - f_n^2(x)|, \forall x \in X$. The sequence $(p_n)_n$ converges in measure to 0, and it is easy to see that $(P_n(A))_n$ is Cauchy uniformly with respect to A; then, (o) $-\lim_n P_n(A)$ exists in R, uniformly with respect to $A \in \mathcal{A}$: we denote this limit by P(A). As the integral of simple functions is absolutely continuous, we have that

$$[(o) - \lim_{k} \mu(E_k) = 0] \Longrightarrow [(o) - \lim_{k} P_n(E_k) = 0, \ \forall \ n \in \mathbb{N}.]$$

Now, we prove that $(o) - \lim_k P(E_k) = 0$. Fix arbitrarily $n, k \in \mathbb{N}$. Then, there exist some sequences in R, $(t_n)_n$, $(r_{n,k})_{n,k}$, such that $t_n \downarrow 0$, $r_{n,k} \downarrow_k 0$ for all fixed $n \in \mathbb{N}$, and

$$|P(E_k) - P_n(E_k)| \le t_n, \ P_n(E_k) \le r_{n,k}, \ \forall \ n,k.$$

Thus, $\forall n \in \mathbb{N}$, we have:

$$0 \le (o) - \limsup_{k} (P(E_k)) \le (o) - \limsup_{k} |P(E_k) - P_n(E_k)| + (o) - \limsup_{k} (P_n(E_k)) \le t_n + \inf_k r_{n,k} = t_n.$$

By arbitrariness of n, we get $(o) - \lim_k (P(E_k)) = 0$. By convergence in measure of $(p_n)_n$ to 0, for every fixed $\varepsilon > 0$ and $n \in \mathbb{N}$, we have:

$$0 \leq P(X) = P(\{x \in X : p_n(x) > \varepsilon\}) + [P(\{x \in X : p_n(x) \le \varepsilon\}) - P_n(\{x \in X : p_n(x) \le \varepsilon\})] + P_n(\{x \in X : p_n(x) \le \varepsilon\}) \le v_n + w_n + \varepsilon \ \mu(X),$$

for some suitable sequences $(v_n)_n$, $(w_n)_n$ in R, such that $v_n \downarrow 0 \downarrow w_n$. Taking the infima with respect to n, and by arbitrariness of ε , we obtain P(X) = 0. As $0 \le P_n(A) \le P_n(X) \ \forall \ n \in \mathbb{N}, \ \forall \ A \in \mathcal{A}$, we get: $P(A) = 0, \ \forall \ A \in \mathcal{A}$. So, $\forall \ n \in \mathbb{N}, \ \forall A \in \mathcal{A}$, we get:

$$\sup_{A} |l_{1}(A) - l_{2}(A)| \leq |\int_{A} f_{n}^{1} d\mu - l_{1}(A)| + |l_{2}(A) - \int_{A} f_{n}^{2} d\mu| + |\int_{A} f_{n}^{1} d\mu - \int_{A} f_{n}^{2} d\mu| \leq a_{n} + b_{n} + \int_{A} p_{n} d\mu \leq a_{n} + b_{n} + c_{n},$$

for some suitable sequences $(a_n)_n$, $(b_n)_n$, $(c_n)_n$, $a_n \downarrow 0$, $b_n \downarrow 0$, $c_n \downarrow 0$. Taking the infima, we get:

$$\sup_{A} |l_1(A) - l_2(A)| \le \inf_{n} (a_n + b_n + c_n) = 0.$$

Thus, $l_1(A) = l_2(A), \forall A \in \mathcal{A}.$

Remark 4.13 It is readily seen that the integral introduced in 4.11 is a linear monotone functional and a finitely additive set function.

Lemma 4.14 Under the same notations as above, let f be an integrable function, and $(f_n)_n$ a sequence of simple function, convergent in measure to f and Cauchy in L^1 . Then,

$$(o) - \lim_{n} \int_{X} |f_n - f| \, d\mu = 0.$$

Proof: As $(f_n)_n$ is Cauchy in L^1 , there exists a sequence $(y_n)_n$, $R \ni y_n \downarrow 0$, such that

$$\int_X |f_n - f_m| \ d\mu \le y_n$$

Fix $n \in \mathbb{N}$. As $(f_m)_m$ converges in measure to f, then $(|f_n - f_m|)_m$ converges in measure to $|f_n - f|$. Moreover, it is easy to check that $(|f_n - f_m|)_m$ is Cauchy in L^1 . So,

$$\int_{A} |f_{n} - f| \ d\mu = (o) - \lim_{m} \int_{A} (|f_{n} - f_{m}|) \ d\mu,$$

uniformly with respect to $A \in \mathcal{A}$, and thus

$$\int_X |f_n - f| \ d\mu \le y_n,$$

that is the assertion. \Box

Lemma 4.15 Let f be an integrable function, and let $(A_{n,\lambda})_{n \in \mathbb{I}} N_{\lambda \in \Lambda}$ be a family of subsets of X, such that

$$(o) - \lim_{n} \left(\sup_{\lambda} \mu(A_{n,\lambda}) \right) = 0.$$

,

Then,

$$(o) - \lim_{n} \left(\sup_{\lambda} \int_{A_{n,\lambda}} |f| \ d\mu \right) = 0.$$

Proof: Let $(f_h)_{h \in \mathbb{N}}$ be as in Lemma 4.14. There exist some sequences $(z_n)_n$, $(d_h)_h$, $R \ni z_n \downarrow 0$, $R \ni d_h \downarrow 0$, and there exists some real numbers v_h , $h \in \mathbb{N}$, such that, for all n, k, λ , we have:

$$\int_{A_{n,\lambda}} |f| \ d\mu \le \int_X \ |f - f_h| \ d\mu + \int_{A_{n,\lambda}} \ |f_h| \ d\mu \le d_h + v_h \ z_n,$$

and hence

$$\sup_{\lambda \in \Lambda} \int_{A_{n,\lambda}} |f| \ d\mu \le d_h + v_h \ z_n;$$

 thus

$$0 \le (o) - \limsup_{n} \left(\sup_{\lambda \in \Lambda} \int_{A_{n,\lambda}} |f| \ d\mu \right) \le d_h + (o) - \limsup_{n} v_h \ z_n, \ \forall \ h$$

and therefore

$$0 \le (o) - \limsup_{n} \left(\sup_{\lambda \in \Lambda} \int_{A_{n,\lambda}} |f| \ d\mu \right) \le \inf_{h} \ d_{h} = 0,$$

that is

$$(o) - \lim_{n} \left(\sup_{\lambda \in \Lambda} \int_{A_{n,\lambda}} |f| \ d\mu \right) = 0.\square$$

We now state the following:

Theorem 4.16 Let $(f_n)_n$ be a sequence of simple functions of R^X , convergent in measure to $f \in R^X$. Then, the following are equivalent: **4.16.1.**) (f) is Cauchy in L^1

4.16.1.)
$$(f_n)_n$$
 is Cauchy in L^1

4.16.2.) f is integrable and $(f_n)_n$ converges in L^1 to f. **4.16.3.)** $\sup_n \int_X f_n d\mu \in R$; and

$$(o) - \lim_{n} \left[\sup_{\lambda} \left(\sup_{m \ge n} \int_{A_{n,\lambda}} |f_m| \ d\mu \right) \right] = 0,$$

for every family $(A_{n,\lambda})_{n \in \mathbb{N}, \lambda \in \Lambda}$ of subsets of X, such that

$$(o) - \lim_{n} \left(\sup_{\lambda} \mu(A_{n,\lambda}) \right) = 0.$$

4.16.4.) (o) $-\lim_{n} \sup_{k \ge n} \int_{\{x \in X: |f_k(x)| > n\}} |f_k| d\mu = 0.$

Proof: We observe that we will use convergence in measure only in order to prove the implications $[4.16.1.)] \implies [4.16.2.)]$ and $[4.16.3.)] \implies [4.16.1.)].$

[4.16.1.)] \Longrightarrow [4.16.2.)] : See Definition 4.10 and Lemma 4.14. [4.16.2.)] \Longrightarrow [4.16.3.)] : Fix $\lambda \in \Lambda$, $n, m \in \mathbb{N}$, with $m \ge n$. By virtue of Lemma 4.15, we have:

$$\int_{A_{n,\lambda}} |f_m| \ d\mu \le \int_X |f - f_m| \ d\mu + \int_{A_{n,\lambda}} |f| \ d\mu \le s_m + e_n \le s_n + e_n,$$

for some suitable sequences $(s_n)_n$ and $(e_n)_n$, $R \ni s_n \downarrow 0$, $R \ni e_n \downarrow 0$. So,

$$\sup_{\lambda} \left(\sup_{m \ge n} \int_{A_{n,\lambda}} |f_m| \ d\mu \right) \le s_n + e_n, \ \forall \ n \in \mathbb{N},$$

and therefore

$$(o) - \lim_{n} \left[\sup_{\lambda} \left(\sup_{m \ge n} \int_{A_{n,\lambda}} |f_m| \ d\mu \right) \right] = 0.$$

By proceeding analogously, it is easy to prove that

$$\sup_{n} \int_{X} f_n \ d\mu \in R.$$

[4.16.3.)] \implies [4.16.4.)] : For every $n, k \in \mathbb{N}$, let $A_{n,k} \equiv \{x \in X : |f_k(x)| > n\}$. Then, there exists $r \in R$, such that

$$r \ge \int_X |f_k| \ d\mu \ge \int_{A_{n,k}} |f_k| \ d\mu \ge \int_{A_{n,k}} n \ d\mu = n \ \mu(A_{n,k}).$$

Thus, $\mu(A_{n,k}) \leq \frac{r}{n}$. So,

(o)
$$-\lim_{n} \int_{A_{n,k}} |f_{n+p}| d\mu = 0$$

uniformly with respect to k and $p \in \mathbb{N}$. Therefore,

$$(o) - \lim_{n} \left(\sup_{k \ge n} \int_{A_{n,k}} |f_k| \ d\mu \right) = 0.$$

(see also [8]) [4.16.4.)] \implies [4.16.3.)] : Let $A_{n,k}$ $(n, k \in \mathbb{N})$ be as in the previous step. For each $n \in \mathbb{N}$, and for every $k \in \mathbb{N}$, with $k \ge n$, one has:

$$\int_X |f_k| \ d\mu = \int_{X \cap A_{n,k}} |f_k| \ d\mu + \int_{X \cap A_{n,k}^c} |f_k| \ d\mu \le \alpha_n + n \ \mu(X),$$

where α_n is a suitable decreasing sequence in R, with $\inf_n \alpha_n = 0$. Taking n = 1, we get:

$$\int_X |f_k| \ d\mu \le \alpha_1 + \mu(X) :$$

so,

$$\sup_{k\geq 1} \int_X |f_k| \ d\mu \in R.$$

Let now $(E_{n,\lambda})_{n,\lambda}$ be such that $(o) - \lim_{n \to \infty} \sup_{\lambda} \mu(E_{n,\lambda}) = 0$. Then, $\forall \lambda \in \Lambda, \forall h, n, k \in \mathbb{N}$, with $k \ge n$, and $k \ge h$, we have:

$$\int_{E_{n,\lambda}} |f_k| \, d\mu = \int_{E_{n,\lambda} \cap A_{h,k}} |f_k| \, d\mu + \int_{E_{n,\lambda} \cap A_{h,k}^c} |f_k| \, d\mu \le \rho_h + h \, \mu(E_{n,\lambda}) \le \rho_h + h \, \sigma_n$$

for two suitable sequences $(\rho_h)_h$ and σ_n in R, such that $\rho_h \downarrow 0 \downarrow \sigma_n$. Therefore, for every $k \ge n$, we get:

$$\sup_{\lambda} \left(\sup_{k \ge n} \int_{E_{n,\lambda}} |f_k| \ d\mu \right) \le \rho_h + h \ \sigma_n.$$

Thus,

$$0 \le (o) - \limsup_{n} \left[\sup_{\lambda} \left(\sup_{k \ge n} \int_{E_{n,\lambda}} |f_k| \ d\mu \right) \right] \le \rho_h + h \inf_n \sigma_n = \rho_h, \ \forall h.$$

By arbitrariness of h, we get:

$$0 \le (o) - \limsup_{n} \left[\sup_{\lambda} \left(\sup_{k \ge n} \int_{E_{n,\lambda}} |f_k| \ d\mu \right) \right] \le \inf_{h} \rho_h = 0.$$

Hence,

$$(o) - \lim_{n} \left[\sup_{\lambda} \left(\sup_{k \ge n} \int_{E_{n,\lambda}} |f_k| \, d\mu \right) \right] = 0.$$

 $[4.16.3.)] \Longrightarrow [4.16.1.)]$: Fix $\varepsilon > 0$. As $(f_n)_n$ converges in measure to f, then $(f_n)_n$ is Cauchy in measure. So, there exists a sequence

 $(z_n)_n, z_n \downarrow 0$, such that, for each $n \in \mathbb{N}, \forall m \ge n, \mu(A_{n,m}) \le z_n$, where $A_{n,m} = \{x \in X : |f_n(x) - f_m(x)| > \varepsilon\}$. By 4.16.3.), we have

$$\int_{A_{n,m}} |f_m| \ d\mu \le t_n, \ \forall \ n \in \mathbb{N}, \ \forall \ m \ge n,$$

for a suitable sequence $(t_n)_n$, $t_n \downarrow 0$. Thus, $\forall n \in \mathbb{N}, \forall m \ge n$:

$$\begin{split} \int_X |f_n - f_m| \ d\mu &= \int_{A_{n,m}^c} |f_n - f_m| \ d\mu + \int_{A_{n,m}} |f_n - f_m| \ d\mu \\ &\leq \varepsilon \ \mu(X) + \int_{A_{n,m}} |f_n| \ d\mu + \int_{A_{n,m}} |f_m| \ d\mu \leq \\ &\leq \varepsilon \ \mu(X) + t_n + w_n, \end{split}$$

for some suitable sequences $t_n \downarrow 0$, $w_n \downarrow 0$. So, the assertion follows.

A consequence of Theorem 4.16 is the following:

Corollary 4.17 With the same hypotheses and notations as above, let $f \in \mathbb{R}^X$ be an integrable function. Then there exists an equiintegrable sequence $(f_n)_n$ of simple functions, convergent in measure to f.

We will prove the following theorem, which is the converse of Corollary 4.17:

Theorem 4.18 If $f \in \mathbb{R}^X$ is such that there exists an equiintegrable sequence $(f_n)_n$ of functions, convergent in measure to f, then f is integrable, and

$$\int_X f \ d\mu = \lim_n \ \int_X f_n \ d\mu.$$

Now we compare the integral introduced in 4.11 with the (B)-integral introduced in [3], and the "monotone integral" introduced in [4].

Definition 4.19 Under the same notations as above, a map f is said to be (B)-*integrable* if there exists a sequence $(s_n)_n$ of simple functions, satisfying 4.16.3.) and (o)-convergent in measure to f. In this case, we define

$$(B) - \int_A f \ d\mu \equiv (o) - \lim_n \int_A s_n \ d\mu, \ \forall A \in \mathcal{A}.$$

The following result is a consequence of 4.4 and 4.16.

Theorem 4.20 Let R be a Dedekind complete Riesz space. Then, every (B)-integrable function f is integrable too. Moreover, if R is Egoroff, f is integrable if and only if it is (B)-integrable. **Theorem 4.21** If $f: X \to \mathbb{R}$ is bounded measurable, then $\int_X f d\mu = (M) - \int_X f d\mu$.

Proof: First of all, we note that the quantity at the right side exists in R, by construction.

Without loss of generality, we may suppose that f is nonnegative. If f is simple, the assertion is immediate. Now, let $L \equiv \sup_{x \in X} f(x)$, and $(s_n)_n$ be as the functions g_n in Proposition 3.11. of [4]. For every $n \in \mathbb{N}$ and $x \in X$, it is:

$$s_n(x) \le f(x) \le s_n(x) + \frac{L}{2^n}.$$

So, the sequence $(s_n)_n$ converges uniformly to f. Then

$$(o) - \lim_{n} \int_{X} s_{n} d\mu = (o) - \lim_{n} (M) - \int_{X} s_{n} d\mu = \sup_{n} (M) - \int_{X} s_{n} d\mu = (M) - \int_{X} f d\mu.$$

We observe that the monotone integral satisfies Lemma 4.15 (see also [4]); thus, it follows that $(s_n)_n$ converges in measure to f and satisfies 4.16.3.); so, by Theorem 4.16, we can conclude that f is integrable and $\int_X f d\mu = (M) - \int_X f d\mu$. \Box

Theorem 4.22 Let $f : X \to \mathbb{R}$ be a measurable map. Then, the following are equivalent:

- **1.)** There exists an equiintegrable sequence of simple functions $(s_n)_n$, convergent in measure to f.
- **2.)** f is (M)-integrable.
- **3.)** *f* is integrable.

Proof. (see also [5]) Without any restriction, we can suppose that f is nonnegative.

[1.)] \implies [2.)] : Let $(s_n)_n$ satisfy [1.)]. Then, by Theorem 3.23. of [4] [Vitali 's theorem], it follows that f is integrable, and

$$\int_X f \, d\mu = (o) - \lim_n \int_X s_n \, d\mu = (B) - \int_X f \, d\mu.$$

[2.)] \implies [3.)] : Assume that f is (nonnegative and) (M)-integrable, and let $(s_n)_n$ be as in Proposition 3.11. of [4]. Then $(s_n)_n$ is an (increasing) sequence of simple functions, convergent in measure to fand satisfying 4.16.3.), because Lemma 4.15 holds for the (M)-integral. Thus, f is integrable.

 $[3.)] \implies [1.)]$: Straightforward.

Now, when X is a Banach lattice, it is possible to compare the integral defined in 4.11 with the Bochner integral. The following result holds:

Theorem 4.23 Let R be a Banach lattice, $\mu : \mathcal{A} \to R$ be an s-bounded finitely additive measure, $f : X \to \mathbb{R}$ be a map. Then, f is integrable if and only if f is Bochner integrable.

Proof: We denote by ν a control for μ . If f is integrable, then there exists a sequence $(s_n)_n$ of simple functions, converging in measure to f and uniformly integrable.

Thus, $\int_{-}^{-} f_n d\mu \ll m \ll \nu$, uniformly with respect to *n*. By Theorem 2.5. of [5], *f* is Bochner integrable.

Conversely, let f be Bochner integrable. Without any restriction, we may assume that f is nonnegative. Then, there exists a sequence $(f_n)_n$ of simple functions, $0 \le f_n \le f$, converging in measure to f. Then we have:

$$\int_X f_n \ d\mu \le \ (\text{Bochner}) - \int_X f \ d\mu \ \ll \mu.$$

So, integrability of f follows. \Box

Hence, in Banach lattices, the Bochner and the monotone integral coincide.

Let now R be a Dedekind complete Riesz space: by Maeda-Ogasawara-Vulikh representation theorem (see also [1]), there exists a compact extremally disconnected topological space Ω such that R can be embedded as a solid subspace of $\mathcal{C}_{\infty}(\Omega) \equiv \{f : \Omega \to \widetilde{IR} : f \text{ is continuous}, \text{ and } \{\omega \in \Omega : |f(\omega)| = +\infty\}$ is nowhere dense in $\Omega\}$.

Now, let $u : [a, b] \to R$ be a Riemann integrable map. Then, there exists a nowhere dense set $N \subset \Omega$ such that the map $t \mapsto u_{\omega}(t)$, defined by setting $u_{\omega}(t) \equiv u(t)(\omega)$, is real-valued and bounded. We observe that, for each function $s \in S_u$, for every $\omega \notin N$, the map $s_{\omega}(t) \equiv s(t)(\omega)$ is a step function, and

$$s(t)(\omega) \le u(t)(\omega), \ \forall \ t \in [a, b].$$

So we get, up to the complement of a meager set:

$$\left(\int_{a}^{b} u(t) dt\right)(\omega) = \left[\sup_{s \in S_{u}} \left(\int_{a}^{b} s(t) dt\right)\right](\omega) \le \sup_{w \in S_{u\omega}} \int_{a}^{b} w(t) dt = * \int_{a}^{b} u(t)(\omega) dt;$$
$$\left(\int_{a}^{b} u(t) dt\right)(\omega) = \left[\inf_{v \in V_{u}} \left(\int_{a}^{b} v(t) dt\right)\right](\omega) \ge \inf_{z \in V_{u\omega}} \int_{a}^{b} z(t) dt = * \int_{a}^{b} u(t)(\omega) dt;$$

that is, u_{ω} is Riemann-integrable, and

$$\left(\int_{a}^{b} u(t) dt\right)(\omega) = \int_{a}^{b} u(t)(\omega) dt.$$

Remark 4.24 By proceeding as above, we have that, if $R = \mathcal{B}(D) = \{f \in \mathbb{R}^D : f \text{ is bounded }\}$, where D is an arbitrary set, then

$$\left(\int_a^b u(t) \ dt\right)(d) = \int_a^b u(t)(d) \ dt \ \forall \ d \in D.$$

Endow now D with the discrete topology, let $R' \equiv C(\beta D) = \{f \in \mathbb{R}^{\beta D} : f \text{ is continuous } \}$, and $u : [a, b] \to R'$ be a Riemann-integrable function: then, the map $\xi \mapsto (\int_a^b u(t) dt)(\xi)$ is the (unique) continuous extension to the whole of βD of the map $d \mapsto (\int_a^b u(t) dt)(d)$, and thus it is equal to the Chojnacki-integral of the map u, where the chosen retraction $r : \beta D \to \beta D$ is the identity (see also [2], [7]).

References

- S.J. BERNAU "Unique representation of Archimedean lattice groups and normal Archimedean lattice rings", Proc. London Math. Soc., 15 (1965), 599-631.
- [2] A. BOCCUTO "Riesz spaces, integration and sandwich theorems", Tatra Mountains Math. Publ., 3 (1993), 213-230.
- [3] A. BOCCUTO "Abstract integration in Riesz spaces", to appear on Tatra Mountains Math. Publ.
- [4] A. BOCCUTO-A. R. SAMBUCINI "On the De Giorgi-Letta integral with respect to means with values in Riesz spaces", to appear.
- [5] J. K. BROOKS–A. MARTELLOTTI "On the De Giorgi-Letta integral in infinite dimensions", Atti Sem. Mat. Fis. Univ. Modena, 4 (1992), 285-302.
- [6] D. CANDELORO "On Riemann-Stieltjes integral in Riesz spaces", to appear.
- [7] W. CHOJNACKI "Sur un théorème de Day, un théorème de Mazur-Orlicz et une généralisation de quelques théorèmes de Silverman," Colloq. Math., 50 (1986), 257-262.
- [8] Y. S. CHOW–H. TEICHER "Probability theory", Springer-Verlag (1978).

- [9] E. De GIORGI–G. LETTA "Une notion générale de convergence faible des fonctions croissantes d'ensemble", Ann. Scuola Sup. Pisa 33 (1977), 61-99.
- [10] M. DUCHOŇ–B. RIEČAN "On the Kurzweil-Stieltjes integral in ordered spaces", to appear on Tatra Mountains Math. Publ.
- [11] N. DUNFORD–J. T. SCHWARTZ "Linear Operators I; General Theory", Interscience, New York (1958)
- [12] G. H. GRECO "Integrale monotono", Rend. Sem. Mat. Univ. Padova, 57 (1977) 149-166.
- [13] J. HALUŠKA "On integration in complete vector lattices", Tatra Mountains Math. Publ., 3 (1993), 201-212.
- [14] W. A. J. LUXEMBURG A. C. ZAANEN "Riesz Spaces", I, (1971), North-Holland Publishing Co.
- [15] P. MCGILL "Integration in vector lattices", J. Lond. Math. Soc., 11 (1975), 347-360.
- [16] B. Z. VULIKH "Introduction to the theory of partially ordered spaces", (1967), Wolters - Noordhoff Sci. Publ., Groningen.
- [17] J. D. M. WRIGHT "Stone-algebra-valued measures and integrals", Proc. Lond. Math. Soc., 19 (1969), 107-122.