The Burkill-Cesari Integral for Riesz spaces *

Antonio Boccuto Anna Rita Sambucini (PERUGIA)[†]

SUNTO. Si definisce un integrale del tipo "Burkill-Cesari" per funzioni d'insieme a valori in spazi di Riesz Dedekind completi. Si introduce un concetto di quasi-additività, simile a quello introdotto da L. Cesari in [5]. Si provano alcuni teoremi analoghi a quelli classici, e si confronta l'integrale introdotto con quello di Riemann e con quello monotono di cui in [1].

SUMMARY. A definition of "Burkill-Cesari type integral" is given, for set functions, with values in Dedekind complete Riesz spaces. A concept of quasi-additivity is introduced, similar to the one introduced by L. Cesari in [5]. Some theorems analogous to the classical ones are proved. Moreover, we give a comparison with the "Riemann-integral" and the "monotone integral" defined in [1].

1 Introduction.

In 1962 ([5]), L. Cesari gave a definition of integral for set functions, with values in a vector space of finite dimension (the *Burkill-Cesari integral*) and introduced the concepts of quasi-additivity and quasi-subadditivity. He proved that several classical integrals can be viewed as particular cases of this integral. Subsequently, Warner ([11]) extended this integral to the case of set functions with values in a locally convex topological vector space (lctvs). Several authors investigated this type of integration and its related topics: we mention here [9], [10], [3].

Recently, in [7] a theory of integration was developped for real-valued functions, with respect to finitely additive measures, taking values in a lctvs. Moreover, it was proved that this integral can be interpreted as the Burkill-Cesari integral of a suitable set function. Furthermore, in [4]

Lavoro svolto nell' ambito dello G.N.A.F.A. del C.N.R.

^{*}Pervenuto in Redazione il

[†]Indirizzo degli Autori: Department of Mathematics, via Vanvitelli,1 - 06123 PERUGIA(ITALY) E-mail:boccuto@dipmat.unipg.it, matears1@unipg.it

A.M.S. CLASSIFICATION: 28A70.

KEY WORDS: Riesz spaces, Burkill-Cesari integration, quasi-additivity.

a "Riemann-Stieltjes"-type integral was investigated for Dedekind complete Riesz-space-valued set functions.

In this paper, we introduce a "Burkill-Cesari"-type integral for set functions, taking values in a Dedekind complete Riesz space R, and a concept of quasi-additivity and quasi-subadditivity, similar to the ones in [5]. Moreover, we prove some "main" theorems for this type of integral, similar to the classical ones of Cesari ([5]) and Breckenridge ([3]). In particular we prove that, if we introduce a "natural mesh" for a suitable class of intervals, then a bounded R-valued function f, defined in [a, b], is "(R)-integrable" (see [1]) if and only if the corresponding "Mengoli-Cauchy" interval function

$$\eta([\alpha,\beta[) \equiv f(z)(\beta - \alpha),$$

where z is an arbitrary point of $[\alpha, \beta]$, is quasi additive (and hence (BC)-integrable), and that in this case the two involved integrals coincide.

In [1], we introduced a "monotone-type" integral for real-valued functions, defined on an arbitrary set X, and with respect to finitely additive R-valued means μ .

In this paper, we shall prove that f is integrable (in the monotone sense) if and only if the "Mengoli-Cauchy" interval function associated with the map

$$u(t) \equiv \mu(\{x \in X : f(x) > t\}), \ t \in \mathbb{R}_0^+,$$

is quasi-additive, and therefore (BC)-integrable, and the two integrals coincide.

Our thanks to the referees for their helpful suggestions.

2 Preliminaries.

A Riesz space R is called *Archimedean* if the following property holds: for every choice of $a, b \in R$, $na \leq b$ for all $n \in \mathbb{N}$, implies that $a \leq 0$.

A Riesz space R is said to be *Dedekind complete* [resp. σ -*Dedekind complete*] if every nonempty [countable] subset of R, bounded from above, has least upper bound in R. Every σ -Dedekind complete Riesz space is Archimedean.

Definition 2.1 A directed net $(r_{\alpha})_{\alpha \in \Xi}$ is said to be (o)-convergent to r, if

$$(o) - \limsup_{\alpha} r_{\alpha} \equiv \inf_{\alpha} \sup_{\beta \ge \alpha} r_{\beta} = (o) - \liminf_{\alpha} r_{\alpha} \equiv \sup_{\alpha} \inf_{\beta \ge \alpha} r_{\beta}$$

and we will write $(o) - \lim_{\alpha} r_{\alpha} = r$.

Definition 2.2 Given an element $r \in R$, we define $r^+ \equiv r \lor 0$, $r^- \equiv (-r) \lor 0$, $|r| \equiv r \lor (-r)$.

Definition 2.3 A directed net $(r_{\alpha})_{\alpha}$ is said to be (o)-Cauchy if

$$(o) - \limsup_{(\alpha,\beta)} |r_{\alpha} - r_{\beta}| = 0$$

(see also [8]).

Definition 2.4 Given a fixed element $\xi \in \Xi$, we indicate with the symbol $(o) - \limsup_{\alpha \ge \xi} r_{\alpha}$ [resp. $(o) - \liminf_{\alpha \ge \xi} r_{\alpha}$] the quantity

$$\inf_{\alpha \geq \xi} \sup_{\beta \geq \alpha} r_{\beta} \ [\sup_{\alpha \geq \xi} \inf_{\beta \geq \alpha} r_{\beta}.]$$

3 The Burkill-Cesari integral.

We now introduce a Burkill-Cesari-type integral for set functions, with values in a Dedekind complete Riesz space R.

Definition 3.1 Let X be any nonempty set, \mathcal{A} an arbitrary nonempty subset of $\mathcal{P}(X)$, R a Dedekind complete Riesz space, $\mathcal{D} \equiv \{D\}$ a directed net of collections of pairwise disjoint subsets of X, belonging to \mathcal{A} . Let $\eta : \mathcal{A} \to R$ be a set function, and for all $D \in \mathcal{D}$, define $S(\eta, D) \equiv \sum_{I \in D} \eta(I)$. We say that η is *Burkill-Cesari integrable* ((BC)-*integrable*) if there exists in R the limit

$$(o) - \lim_{D \in \mathcal{D}} S(\eta, D).$$

When this limit exists, we denote it by the symbol $(BC) - \int_X \eta$.

It is easy to prove that, if α , $\beta \in \mathbb{R}$ and η_1 and η_2 are (BC)-integrable, then $\alpha \eta_1 + \beta \eta_2$ is (BC)-integrable too, and

$$\int_X \alpha \eta_1 + \beta \eta_2 = \alpha \int_X \eta_1 + \beta \int_X \eta_2 .$$

Definition 3.2 We say that $\eta : \mathcal{A} \to R$ is *quasi-additive* if

$$(o) - \lim_{D_0 \in \mathcal{D}} (o) - \limsup_{D \ge D_0} \sum_{I \in D_0} |\sum_{J \in D, J \subset I} \eta(J) - \eta(I)| = 0$$

and

$$(o) - \lim_{D_0 \in \mathcal{D}} (o) - \limsup_{D \ge D_0} \sum_{J \in D; J \not\subset I, \ \forall \ I \in D_0} |\eta(J)| = 0.$$

The proof of the following proposition is straightforward.

Proposition 3.3 If η_1 , η_2 are quasi-additive and α , β are two arbitrary real numbers, then $\alpha \eta_1 + \beta \eta_2$ is quasi-additive.

It is easy to check that, if $R = \mathbb{R}$, and there exists a "mesh" $\delta : \mathcal{D} \to \mathbb{R}^+$, such that, for every $D_1, D_2 \in \mathcal{D}, [D_1 \ge D_2]$ iff $[\delta(D_1) \le \delta(D_2)]$, then Definition 3.2 is essentially equivalent to the famous definition of quasi-additivity, proposed by Cesari in [5]:

 $\forall \varepsilon > 0, \exists \sigma = \sigma(\varepsilon) > 0$, such that, for every $D_0 \in \mathcal{D}$ with $\delta(D_0) < \sigma$, there exists $\lambda(\varepsilon, D_0) > 0$ such that, for each $D \in \mathcal{D}$ with $\delta(D) < \lambda$, we have:

$$\sum_{I \in D_0} |\sum_{J \in D, \ J \subset I} \eta(J) - \eta(I)| < \varepsilon$$

and

$$\sum_{I \in D; J \not \subset I, \ \forall \ I \in D_0} |\eta(J)| < \varepsilon$$

The following result holds:

Theorem 3.4 If η is quasi-additive, then η is (BC)-integrable.

Proof: We observe that there exists $(p_D)_D$, $p_D \downarrow 0$, such that, for all $D_0, D_1, D_2 \in \mathcal{D}$, with $D_1 \ge D_0, D_2 \ge D_0$, one has:

$$\begin{array}{l} (o) - \limsup_{(D_1,D_2)} |S(\eta,D_1) - S(\eta,D_2)| = (o) - \limsup_{(D_1,D_2),D_1 \ge D_0,D_2 \ge D_0} |S(\eta,D_1) - S(\eta,D_2)| \le \\ \le & (o) - \limsup_{D_1 \ge D_0} \sum_{I \in D_0} |\sum_{J \in D_1,J \subset I} \eta(J) - \eta(I)| + (o) - \limsup_{D_1 \ge D_0} \sum_{J \in D_1;J \not \in I, \ \forall \ I \in D_0} |\eta(J)| + \\ + & (o) - \limsup_{D_2 \ge D_0} \sum_{I \in D_0} |\sum_{J \in D_2,J \subset I} \eta(J) - \eta(I)| + (o) - \limsup_{D_2 \ge D_0} \sum_{J \in D_2;J \not \in I, \ \forall \ I \in D_0} |\eta(J)| \le p_{D_0}. \end{array}$$

By arbitrariness of $D_0 \in \mathcal{D}$, we get:

$$(o) - \limsup_{(D_1, D_2)} |S(\eta, D_1) - S(\eta, D_2)| = 0.$$

So, the net $\{S(\eta, D)\}_{D \in \mathcal{D}}$ is Cauchy, and hence it is convergent, by virtue of Dedekind completeness of R (see also [8]).

Definition 3.5 We say that η is *quasi-subadditive* if

$$(o) - \lim_{D_0 \in \mathcal{D}} (o) - \limsup_{D \ge D_0} \sum_{I \in D_0} \left[\sum_{J \in D, J \subset I} \eta(J) - \eta(I) \right]^- = 0.$$

It is readily seen that, if α , $\beta \in \mathbb{R}_0^+$ and η_1 , η_2 are quasi-subadditive, then $\alpha \eta_1 + \beta \eta_2$ is quasi-subadditive too: indeed, it is enough to recall that

$$(a+b)^{-} \le a^{-} + b^{-}; \ (\alpha \ a)^{-} = \alpha \ a^{-},$$

 $\forall a, b \in R \text{ and } \alpha \in I\!\!R_0^+ \text{ (see also [6])}.$

Theorem 3.6 Let η be positive, quasi-subadditive and such that

$$(o) - \limsup_{D \in \mathcal{D}} S(\eta, D)$$

exists in R. Then, η is quasi-additive.

Proof: First of all, we prove (BC)-integrability of η . Let $D \ge D_0 \in \mathcal{D}$. We have:

$$S(\eta, D) - S(\eta, D_0) = \sum_{J \in D} \eta(J) - \sum_{I \in D_0} \eta(I) = \sum_{I \in D_0} \left[\sum_{J \in D, \ J \subset I} \eta(J) - \eta(I) \right] + \sum_{J \in D; J \not\subset I, \ \forall \ I \in D_0} \eta(J) \ge \sum_{I \in D_0} \left[\sum_{J \in D, \ J \subset I} \eta(J) - \eta(I) \right] = -\sum_{I \in D_0} \left[\sum_{J \in D, \ J \subset I} \eta(J) - \eta(I) \right]^- \ge -p_{D_0},$$

where $p_{D_0} \downarrow 0$ (indeed, $a \ge -a^-$, $\forall a \in R$), and hence

$$l^{(1)} \ge S(\eta, D_0) - p_{D_0}, \quad \forall \ D_0 \in \mathcal{D},$$

where $l^{(1)} = (o) - \liminf_{D \in \mathcal{D}} S(\eta, D)$. From this, it follows that

$$(o) - \limsup_{D_0 \in \mathcal{D}} S(\eta, D_0) \le l^{(1)} + (o) - \limsup_{D_0 \in \mathcal{D}} p_{D_0} = l^{(1)}.$$

So, there exists in R the quantity $l \equiv (o) - \lim_{D \in \mathcal{D}} S(\eta, D)$, and thus η is (BC)-integrable.

Now we shall use the following equalities: $|a| = a^+ + a^-$, $a = a^+ - a^-$, and hence $|a| = a + 2 a^-$. Pick arbitrarily $D, D_0 \in \mathcal{D}$, with $D \ge D_0$. We have:

$$\begin{array}{ll} 0 & \leq & \sum_{I \in D_0} |\sum_{J \in D, \ J \subset I} \eta(J) - \eta(I)| + \sum_{J \in D; \ J \not\subset I, \ \forall \ I \in D_0} \eta(J) = \\ & = & \sum_{I \in D_0} [\sum_{J \in D, \ J \subset I} \eta(J) - \eta(I)] + 2 \sum_{I \in D_0} [\sum_{J \in D, \ J \subset I} \eta(J) - \eta(I)]^- + \sum_{J \in D; \ J \not\subset I, \ \forall \ I \in D_0} \eta(J) \leq \\ & \leq & |\sum_{J \in D} |\eta(J) - l| + |\sum_{I \in D_0} \eta(I) - l| + 2 \sum_{I \in D_0} [\sum_{J \in D, \ J \subset I} \eta(J) - \eta(I)]^- \leq 2 \ p_{D_0} + 2 \ q_{D_0} \ , \end{array}$$

for some suitable nets $(p_D)_D$, $(q_D)_D$ in R, with $p_D \downarrow 0$, $q_D \downarrow 0$. Taking the $(o) - \limsup$, we get:

$$0 \le (o) - \limsup_{D \ge D_0} \sum_{I \in D_0} |\sum_{J \in D, \ J \subset I} \eta(J) - \eta(I)|, \ (o) - \limsup_{D \ge D_0} \sum_{J \in D; \ J \not \in I, \ \forall \ I \in D_0} |\eta(J)| \le C_0$$

$$\leq (o) - \limsup_{D \geq D_0} \sum_{I \in D_0} |\sum_{J \in D, \ J \subset I} \eta(J) - \eta(I)| + (o) - \limsup_{D \geq D_0} \sum_{J \in D; \ J \not \subset I, \ \forall \ I \in D_0} |\eta(J)| \leq |\eta(J)|$$

$$\leq 2 p_{D_0} + 2 q_{D_0}.$$

Thus, it follows that η is quasi-additive, that is the assertion. \Box

Definition 3.7 Given a set function $\eta : \mathcal{A} \to R$, define $\eta^+, \eta^-, |\eta| : \mathcal{A} \to R$ as follows:

$$\eta^+(I) \equiv [\eta(I)]^+, \ \eta^-(I) \equiv [\eta(I)]^-, \ |\eta|(I) \equiv |\eta(I)|, \forall I \in \mathcal{A}$$

Theorem 3.8 If η is quasi-additive, then η^+ , η^- and $|\eta|$ are quasi-subadditive.

The proof is analogous to the one given in [5].

Definition 3.9 Under the same notations as above, let $M \subset X$, and define $S(\eta, M, D) \equiv \sum_{I \in D} s(I, M) \eta(I)$, where:

$$s(I,M) \equiv \begin{cases} 1, \text{ if } I \subset M \\ \\ 0, \text{ if } I \not\subset M. \end{cases}$$

We say that η is Burkill-Cesari integrable ((BC)-integrable) on M if there exists in R the limit

$$(o) - \lim_{D \in \mathcal{D}} S(\eta, M, D).$$

When this limit exists, we denote it by the symbols $(BC) - \int_X [\eta, M]$ or $(BC) - \int_M \eta$. The set function $\eta : \mathcal{A} \to R$ is quasi-additive on M if

$$(o) - \lim_{D_0 \in \mathcal{D}} (o) - \limsup_{D \ge D_0} \sum_{I \in D_0} s(I, M) |\eta(I) - \sum_{J \in D} s(J, I) |\eta(I)| = 0$$

and

$$(o) - \lim_{D_0 \in \mathcal{D}} (o) - \limsup_{D \ge D_0} \sum_{J \in D} s(J, M) \left[1 - \sum_{I \in D_0} s(J, I) s(I, M)\right] |\eta(J)| = 0.$$

We say that η is quasi-subadditive on M if

$$(o) - \lim_{D_0 \in \mathcal{D}} (o) - \limsup_{D \ge D_0} \sum_{I \in D_0} s(I, M) \left[\sum_{J \in D} s(J, I) \eta(J) - \eta(I) \right]^- = 0.$$

It is easy to check that, if η is quasi-subadditive, then it is quasi-subadditive on each set $M \in \mathcal{A}$.

Theorem 3.10 If η is quasi additive, and $\int_X |\eta|$ exists in R, then η is quasi additive on every set $M \in \mathcal{A}$.

Proof: Let $M \in \mathcal{A}$. By Theorem 3.8, $|\eta|$, η^+ , η^- are positive and quasi subadditive, and so they are quasi subadditive on M. So,

$$0 \leq \int_M \eta^+$$
, $\int_M \eta^- \leq \int_M |\eta| \leq \int_X |\eta|$

exist in R, and hence $|\eta|$, η^+ , η^- are quasi-additive on M, by reasoning as in Theorem 3.6. Thus, $\eta = \eta^+ - \eta^-$ is quasi-additive on M, that is the assertion. \Box

4 Integrals of Riesz-space-valued functions with respect to realvalued measures

Now we compare the introduced Burkill-Cesari-type integral with other integrals, existing in the literature.

Let R be a Dedekind complete Riesz space, $u : [a, b] \to R$ be a bounded map. In [1], we defined a Riemann - type integral, which can be defined equivalently as a "Mengoli-Cauchy" type integral.

Definition 4.1 Given an interval $[a, b] \subset \mathbb{R}$, we call division of [a, b] any finite set $\{x_0, x_1, \ldots, x_n\} \subset [a, b]$, where $x_0 = a$, $x_n = b$, and $x_i < x_{i+1}$, $\forall i = 0, \ldots, n$. We denote by \mathcal{D} the class of all divisions of [a, b].

We call mesh of a division D the quantity $\delta(D) \equiv \max_i (x_i - x_{i-1})$, and say that $D_1 \ge D_2$ if $\delta(D_1) \le \delta(D_2)$.

A division D is identified with the collection of intervals $[x_{i-1}, x_i]$, where

$$[\alpha,\beta] \equiv \begin{cases} [\alpha,\beta] & \text{if } \beta \neq b \\ \\ \\ [\alpha,\beta] & \text{if } \beta = b. \end{cases}$$

We now recall some definitions of integral given in [1].

Definition 4.2 Let R be a Dedekind complete Riesz space, and $u : [a, b] \to R$ a bounded map. We say that a map $g : [a, b] \to R$ is a *step function* with respect to \mathcal{D} if there exist n + 1 points $x_0 \equiv a < x_1 < \ldots < x_n \equiv b$, such that g is constant in each interval of the type $]x_{i-1}, x_i[$ $(i = 1, \ldots, n)$. If g is a step function, we put $\int_a^b g(t) dt \equiv \sum_{i=1}^n (x_i - x_{i-1}) \cdot g(\xi_i)$ where ξ_i is an arbitrary point of $]x_{i-1}, x_i[$. We call upper integral [resp. lower integral] of u the element of R given by

$$\inf_{v \in V_u} \int_a^b v(t) dt \ [\sup_{s \in S_u} \int_a^b s(t) dt],$$

where

$$\begin{split} V_u &\equiv \{v: v \text{ is a step function }, \ v(t) \geq u(t), \ \forall \ t \in [a, b] \} \\ S_u &\equiv \{s: s \text{ is a step function }, \ s(t) \leq u(t), \ \forall \ t \in [a, b] \}. \end{split}$$

We say that a bounded function $u : [a, b] \to R$ is *Riemann* integrable (or (*R*)-*integrable*), if its lower integral coincides with its upper integral, and, in this case, we call *integral of* u (and write $\int_a^b u(t) dt$) their common value, and we indicate it by

$$(R) - \int_a^b u(t) \ dt.$$

Definition 4.3 Let $[a, b] \subset \mathbb{R}, \mathbb{R}$ be as above, and $u : [a, b] \to \mathbb{R}$ be a map. We say that u is *Mengoli-Cauchy integrable* ((MC)-*integrable*) if there exists an element $I \in \mathbb{R}$ such that

$$(o) - \lim_{D \in \mathcal{D}} |\sum_{i=1}^{n} u(z_i)(x_i - x_{i-1}) - I| = 0,$$

uniformly with respect to $z_i \in [x_{i-1}, x_i]$ (i = 1, ..., n), and we write $(MC) - \int_a^b u(t) dt \equiv I$.

Every Mengoli-Cauchy integrable function is bounded. The following results hold (see also [2]):

Theorem 4.4 Let $u : [a,b] \to R$ be Mengoli-Cauchy integrable. Then, u is bounded and Riemann integrable, and

$$(R) - \int_{a}^{b} u(t) \, dt = (MC) - \int_{a}^{b} u(t) \, dt$$

Theorem 4.5 Let $u : [a, b] \to R$ be Riemann integrable. Then, u is Mengoli-Cauchy integrable, and

$$(MC) - \int_{a}^{b} u(t) dt = (R) - \int_{a}^{b} u(t) dt.$$

Definition 4.6 A map $u : [a, b] \to R$ is called *continuous* at the point $x_0 \in [a, b]$ if

$$(o) - \lim_{x \to x_0} u(x) = u(x_0).$$

A function $u: [a, b] \to R$ is said to be *differentiable* at x_0 if

$$(o) - \lim_{x \to x_0} \frac{u(x) - u(x_0)}{x - x_0}$$
 exists in R .

Remark 4.7 We note that there exist Riemann integrable functions $u : [a, b] \to R$, which are discontinuous at every $x \in]a, b[$.

Indeed, let $[a, b] \equiv [0, 1], R \equiv \mathbb{R}^{[0,1]}, u(s) \equiv \chi_{[0,s]}, \forall s \in [0, 1].$ For each $x \in]0, 1[$, we have:

$$\lim_{t \to x^+} u(t) = \chi_{[0,x]}, \quad \lim_{t \to x^-} u(t) = \chi_{[0,x[},$$

and hence

$$\limsup_{t \to x} u(t) - \liminf_{t \to x} u(t) = \chi_{\{x\}} \leq \frac{1}{2}$$

However, u is Riemann integrable. Put $I(s) \equiv (R) - \int_0^s u(t) dt$. It is easy to check that

$$I(s)(x) = \begin{cases} 0 & \text{if } x \ge s \\ \\ s - x & \text{if } x < s \end{cases}$$

with $\forall s, x \in [0, 1]$, and that the "right derivative" of I(s) is $u(s), \forall s \in [0, 1]$.

Moreover, it is easy to prove that, if $u : [a, b] \to R$ is an (R)-integrable function, then the map $I(s) \equiv (R) - \int_0^s u(t) dt$ is differentiable at the points s for which u is continuous, and in such points I'(s) = u(s).

Now, let \mathcal{A} be the collection of all subintervals of [a, b] of the type $[\alpha, \beta]$, and set $\eta([\alpha, \beta]) \equiv u(z) \ (\beta - \alpha)$, where z is an arbitrary point of $[\alpha, \beta]$. Obviously, a bounded function $u \in \mathbb{R}^{[a,b]}$ is (MC)integrable if and only if η is (BC)-integrable.

We now prove the following:

Theorem 4.8 If u is (R)-integrable, then η is quasi-additive.

Proof: Without loss of generality, we may assume that u is positive. Indeed, if u is (R)-integrable, then u^+ and u^- are (R)-integrable too.

As u is bounded, $(o) - \limsup_{D \in \mathcal{D}} S(\eta, D)$ exists in R. So, it will be enough to show that η is quasi-subadditive, in view of Theorem 3.6.

Let $D_0 \equiv \{ [c_{i-1}, c_i] : i = 1, \dots, N-1 \}, D \equiv \{ [x_{j-1}, x_j] : j = 1, \dots, n \}, \text{ where } c_0 = a < c_1 < \dots < c_{N-1} = b, x_0 = a < x_1 < \dots < x_n = b, \delta(D) \le \delta(D_0). \text{ Moreover, set}$

$$M \equiv \sup_{x \in [a,b]} u(x); \ M_i \equiv \sup_{x \in [c_{i-1}, c_i]} u(x),$$

$$m_i \equiv \inf_{x \in [c_{i-1}, c_i]} u(x).$$

By virtue of (R)-integrability of u, we have:

$$\sum_{I \in D_0} |\sum_{J \in D, \ J \subset I} \eta(J) - \eta(I)| \le \sum_{I \in D_0} (M_i - m_i)(c_i - c_{i-1}) + M \sum_{J \in D, \ J \not \subset I, \ \forall \ I \in D_0} (x_j - x_{j-1}) \le M_i + M_i$$

$$\leq p_D + N \,\delta(D) \, M,$$

for some suitable directed net $(p_D)_D$, $p_D \downarrow 0$. (We note that $N = N(D_0)$ depends on D_0 .) So,

$$0 \le (o) - \limsup_{D \ge D_0} \sum_{I \in D_0} |\sum_{J \in D, \ J \subset I} \eta(J) - \eta(I)| \le p_{D_0} + \inf_{D \ge D_0} N(D_0) \ \delta(D) \ M = p_{D_0},$$

and hence

$$(o) - \lim_{D_0 \in \mathcal{D}} (o) - \limsup_{D \ge D_0} \sum_{I \in D_0} |\sum_{J \in D, J \subset I} \eta(J) - \eta(I)| = 0. \ \Box$$

Next, we show that quasi-additivity can be applied in a different problem.

Definition 4.9 A map $g:[a,b] \to R$ is said to be of bounded variation if the set

$$\{\sum_{I\in D} |q_g(I)| : D\in \mathcal{D}\}$$

is bounded in R, where

$$q_g([u,v]) \equiv g(v) - g(u).$$

In this case, we set

$$V(g, [a, b]) \equiv \sup\{\sum_{I \in D} |q_g(I)| : D \in \mathcal{D}\}.$$

The following result holds.

Theorem 4.10 If $g : [a,b] \to R$ is of bounded variation and continuous in [a,b], then the function $|q_g|$ is quasi-additive.

Proof: We observe that, in order to prove Theorem 4.10, it is enough to prove quasi-subadditivity of $|q_g|$. Indeed, quasi-additivity will follow from Theorem 3.6.

Fix $D_0 \in \mathcal{D}$, $D_0 \equiv \{[c_{i-1}, c_i] : i = 1, \dots, N-1\}$. By the continuity of g at the points $c_i, i = 1, \dots, N-1$, there exists a sequence $(p_n(c_i))_n, p_n \downarrow 0$, such that

$$|q_g([u,v])| \le p_n$$
, whenever $a \le u \le c_i \le v \le b, \ 0 \le v - u \le \frac{1}{n}$ $(i = 1, \dots, N)$

Let $D \in \mathcal{D}$, $D \equiv \{[x_{j-1}, x_j] : j = 1, \dots, k\}$. with $\delta(D) \leq \frac{1}{n}$. Put $E \equiv \{I \in D_0 : \exists j, x_j \in I\}$ (Note that if $[\alpha, \beta] \in D_0 \setminus E$, then $\beta - \alpha \leq \frac{1}{n}$). For $I_i = [c_{i-1}, c_i] \in E$, define $d_i \equiv \min\{x_j : x_j \geq c_{i-1}\}$ and $e_i \equiv \max\{x_j : x_j < c_i\}$. Then

$$\sum_{I \in D_0} \left(\sum_{J \in D, J \subset I} |q_g(J)| - |q_g(I)| \right) \ge \sum_{I_i \in E} \left(|q_g([d_i, e_i])| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} - |q_g(I_i)| \ge \sum_{I_i \in D_0} \left(|q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} |q_g(I_i)| - |q_g(I_i)| = \sum_{I_i \in E} \left(|q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} |q_g(I_i)| - |q_g(I_i)| = \sum_{I_i \in E} \left(|q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} |q_g(I_i)| = \sum_{I_i \in E} \left(|q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} |q_g(I_i)| = \sum_{I_i \in E} \left(|q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} |q_g(I_i)| = \sum_{I_i \in E} \left(|q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} |q_g(I_i)| = \sum_{I_i \in E} \left(|q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} |q_g(I_i)| = \sum_{I_i \in E} \left(|q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} |q_g(I_i)| = \sum_{I_i \in E} \left(|q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} |q_g(I_i)| = \sum_{I_i \in E} \left(|q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} |q_g(I_i)| = \sum_{I_i \in E} \left(|q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} |q_g(I_i)| = \sum_{I_i \in E} \left(|q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} |q_g(I_i)| = \sum_{I_i \in D_0 \setminus E} |q_g(I_i)| = \sum_{I_i \in D_0 \setminus E} \left(|q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} \left(|q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} \left(|q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} \left(|q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} \left(|q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} \left(|q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} \left(|q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} \left(|q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} \left(|q_g(I_i)| - |q_g(I_i)| - |q_g(I_i)| \right) + \sum_{I_i \in D_0 \setminus E} \left(|q_g(I_i)| - |q_g($$

$$\geq \sum_{I_i \in E} - (|g(d_i) - g(c_{i-1})| + |g(e_i) - g(c_i)|] + \sum_{I_i \in D_0 \setminus E} (-p_n(c_i)).$$

So, $\forall D_0 \in \mathcal{D}$,

$$(o) - \limsup_{D \ge D_0} \sum_{I \in D_0} \left[\sum_{J \in D, J \subset I} |q_g(J)| - |q_g(I)| \right]^- = 0.$$

Thus, $|q_g|$ is quasi-subadditive. \Box

We note that $\int_a^b |q_g| = V(g, [a, b])$ (see also [4]).

Now, we recall the integral for extended real-valued functions, with respect to R-valued means, defined in [1].

Definition 4.11 Let X be any set, $\mathcal{B} \subset \mathcal{P}(X)$ be an algebra, R be a Dedekind complete Riesz space, $\mu : \mathcal{B} \to R$ be a finitely additive positive set function; assume that $f : X \to \mathbb{R}_0^+$ is a measurable function, and $u(t) \equiv \mu(\{x \in X : f(x) > t\})$. We say that f is *integrable* if there exists in R the quantity

(4.11.1)
$$\int_0^{+\infty} u(t) dt \equiv \sup_{a>0} \int_0^a u(t) dt = (o) - \lim_{a \to +\infty} \int_0^a u(t) dt$$
,

where the integral in (4.11.1) is intended as in Definition 4.2. If f is integrable, we indicate the element in (4.11.1) by the symbol $\int_X f d\mu$.

A measurable function $f: X \to \mathbb{R}$ is *integrable* if both f^+, f^- are integrable and, in this case, we set

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu.$$

Remark 4.12 It is easy to check that, if $f: X \to \mathbb{R}^+$ is integrable (in the monotone sense), then

$$\int_X f d\mu = \sup_{\mathcal{D}} \sum_{i=1}^n u(x_i)(x_i - x_{i-1}) = \inf_{\mathcal{D}} \sum_{i=1}^n u(x_{i-1})(x_i - x_{i-1}),$$

where \mathcal{D} is the class of all finite subsets of $[0, +\infty[$ of the type $\{x_0 = 0, x_1, \ldots, x_n\}, n \in \mathbb{N}$, by virtue of (decreasing) monotonicity of u.

Now, let $\mathcal{A} \equiv \{[a, b]: a, b \in \mathbb{R}_0^+, a < b\}; \eta(I) \equiv u(x_{i-1}) \ (x_i - x_{i-1}), \delta(D) \equiv \max_{i=1}^{n-1} \ (x_i - x_{i-1}) + \frac{1}{x_n}, \forall D \in \mathcal{D}.$ By proceeding analogously as in the previous case, and by virtue of the properties of the function u, one can prove that a nonnegative function $f \in \mathbb{R}^X$ is integrable (in the monotone sense) if and only if η is quasi-additive, and the (BC)-integral of η coincides with $\int_X f d\mu$.

References

- [1] A. BOCCUTO–A. R. SAMBUCINI "On the De Giorgi-Letta integral with respect to means with values in Riesz spaces", to appear on Real Analysis Exchange
- [2] A. BOCCUTO-A. R. SAMBUCINI "Comparison between different types of abstract integrals in Riesz spaces", (1996), to appear on Rend. Circ. Mat. Palermo
- J. C. BRECKENRIDGE "Burkill-Cesari integrals of quasi additive interval functions", Pacific J. Math. 37 (1971), 635-654.
- [4] D. CANDELORO "Riemann-Stieltjes integration in Riesz spaces", to appear.
- [5] L. CESARI "Quasi-additive set functions and the concept of integral over a variety", Trans. Amer. Math. Soc., 102 (1962), 94-113.
- [6] W. A. J. LUXEMBURG A. C. ZAANEN "Riesz Spaces", I , (1971), North-Holland Publishing Co.
- [7] A. MARTELLOTTI "On integration with respect to lctvs-valued finitely additive measures", Rend. Circ. Mat. Palermo, Serie II, 43 (1994), 181-214.
- [8] P. MCGILL "Integration in vector lattices", J. Lond. Math. Soc., 11 (1975), 347-360.
- [9] C. VINTI,"L' integrale di Weierstrass", Ist. Lombardo Accad. Sci. Lett. (A), 92 (1958), 423-434.
- [10] C. VINTI,"L' integrale di Weierstrass-Burkill, Atti Sem. Mat. Fis. Univ. Modena", 18 (1969), 295-316.
- [11] G. WARNER "The Burkill-Cesari integral", Duke Math. J. 35 (1968), 61-78.