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SUNTO. Si definisce un integrale del tipo ”Burkill-Cesari” per funzioni d’insieme a valori in spazi di

Riesz Dedekind completi. Si introduce un concetto di quasi-additività, simile a quello introdotto da L.

Cesari in [5]. Si provano alcuni teoremi analoghi a quelli classici, e si confronta l’integrale introdotto con

quello di Riemann e con quello monotono di cui in [1].

SUMMARY. A definition of ”Burkill-Cesari type integral” is given, for set functions, with values

in Dedekind complete Riesz spaces. A concept of quasi-additivity is introduced, similar to the one

introduced by L. Cesari in [5]. Some theorems analogous to the classical ones are proved. Moreover, we

give a comparison with the ”Riemann-integral” and the ”monotone integral” defined in [1].

1 Introduction.

In 1962 ([5]), L. Cesari gave a definition of integral for set functions, with values in a vector

space of finite dimension (the Burkill-Cesari integral ) and introduced the concepts of quasi-

additivity and quasi-subadditivity. He proved that several classical integrals can be viewed as

particular cases of this integral. Subsequently, Warner ([11]) extended this integral to the case

of set functions with values in a locally convex topological vector space (lctvs). Several authors

investigated this type of integration and its related topics: we mention here [9], [10], [3].

Recently, in [7] a theory of integration was developped for real-valued functions, with respect to

finitely additive measures, taking values in a lctvs. Moreover, it was proved that this integral

can be interpreted as the Burkill-Cesari integral of a suitable set function. Furthermore, in [4]
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a ”Riemann-Stieltjes”-type integral was investigated for Dedekind complete Riesz-space-valued

set functions.

In this paper, we introduce a ”Burkill-Cesari”-type integral for set functions, taking values in

a Dedekind complete Riesz space R, and a concept of quasi-additivity and quasi-subadditivity,

similar to the ones in [5]. Moreover, we prove some ”main” theorems for this type of integral,

similar to the classical ones of Cesari ([5]) and Breckenridge ([3]). In particular we prove that, if

we introduce a ”natural mesh” for a suitable class of intervals, then a bounded R-valued function

f, defined in [a, b], is ”(R)-integrable” (see [1]) if and only if the corresponding ”Mengoli-Cauchy”

interval function

η([α, β[) ≡ f(z)(β − α),

where z is an arbitrary point of [α, β], is quasi additive (and hence (BC)-integrable), and that

in this case the two involved integrals coincide.

In [1], we introduced a ”monotone-type” integral for real-valued functions, defined on an arbi-

trary set X, and with respect to finitely additive R-valued means µ.

In this paper, we shall prove that f is integrable (in the monotone sense) if and only if the

”Mengoli-Cauchy” interval function associated with the map

u(t) ≡ µ({x ∈ X : f(x) > t}), t ∈ IR+
0 ,

is quasi-additive, and therefore (BC)-integrable, and the two integrals coincide.

Our thanks to the referees for their helpful suggestions.

2 Preliminaries.

A Riesz space R is called Archimedean if the following property holds: for every choice of

a, b ∈ R, na ≤ b for all n ∈ IN, implies that a ≤ 0.

A Riesz space R is said to be Dedekind complete [resp. σ-Dedekind complete] if every nonempty

[countable] subset of R, bounded from above, has least upper bound in R. Every σ-Dedekind

complete Riesz space is Archimedean.

Definition 2.1 A directed net (rα)α∈Ξ is said to be (o)-convergent to r, if

(o)− lim sup
α

rα ≡ inf
α

sup
β≥α

rβ = (o)− lim inf
α

rα ≡ sup
α

inf
β≥α

rβ

and we will write (o)− limα rα = r.

2



Definition 2.2 Given an element r ∈ R, we define r+ ≡ r ∨ 0, r− ≡ (−r)∨ 0, |r| ≡ r ∨ (−r).

Definition 2.3 A directed net (rα)α is said to be (o)-Cauchy if

(o)− lim sup
(α,β)

|rα − rβ| = 0

(see also [8]).

Definition 2.4 Given a fixed element ξ ∈ Ξ, we indicate with the symbol (o)− lim supα≥ξ rα

[resp. (o)− lim infα≥ξ rα] the quantity

inf
α≥ξ

sup
β≥α

rβ [ sup
α≥ξ

inf
β≥α

rβ. ]

3 The Burkill-Cesari integral.

We now introduce a Burkill-Cesari-type integral for set functions, with values in a Dedekind

complete Riesz space R.

Definition 3.1 Let X be any nonempty set, A an arbitrary nonempty subset of P(X), R

a Dedekind complete Riesz space, D ≡ {D} a directed net of collections of pairwise disjoint

subsets of X, belonging to A. Let η : A → R be a set function, and for all D ∈ D, define

S(η,D) ≡
∑
I∈D η(I). We say that η is Burkill-Cesari integrable ((BC)-integrable ) if there

exists in R the limit

(o)− lim
D∈D

S(η,D).

When this limit exists, we denote it by the symbol (BC)−
∫
X η.

It is easy to prove that, if α, β ∈ IR and η1 and η2 are (BC)-integrable, then α η1 + β η2 is

(BC)-integrable too, and ∫
X
α η1 + β η2 = α

∫
X
η1 + β

∫
X
η2 .

Definition 3.2 We say that η : A → R is quasi-additive if

(o)− lim
D0∈D

(o)− lim sup
D≥D0

∑
I∈D0

|
∑

J∈D, J⊂I
η(J)− η(I)| = 0

and

(o)− lim
D0∈D

(o)− lim sup
D≥D0

∑
J∈D;J 6⊂I, ∀ I∈D0

|η(J)| = 0.
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The proof of the following proposition is straightforward.

Proposition 3.3 If η1, η2 are quasi-additive and α, β are two arbitrary real numbers, then

α η1 + β η2 is quasi-additive.

It is easy to check that, if R = IR, and there exists a ”mesh” δ : D → IR+, such that, for

every D1, D2 ∈ D, [D1 ≥ D2] iff [δ(D1) ≤ δ(D2)], then Definition 3.2 is essentially equivalent

to the famous definition of quasi-additivity, proposed by Cesari in [5]:

∀ ε > 0, ∃ σ = σ(ε) > 0, such that, for every D0 ∈ D with δ(D0) < σ, there exists λ(ε,D0) > 0

such that, for each D ∈ D with δ(D) < λ, we have:

∑
I∈D0

|
∑

J∈D, J⊂I
η(J)− η(I)| < ε

and ∑
J∈D;J 6⊂I, ∀ I∈D0

|η(J)| < ε.

The following result holds:

Theorem 3.4 If η is quasi-additive, then η is (BC)-integrable.

Proof: We observe that there exists (pD)D, pD ↓ 0, such that, for all D0, D1, D2 ∈ D, with

D1 ≥ D0, D2 ≥ D0, one has:

(o)− lim sup
(D1,D2)

|S(η,D1)− S(η,D2)| = (o)− lim sup
(D1,D2),D1≥D0,D2≥D0

|S(η,D1)− S(η,D2)| ≤

≤ (o)− lim sup
D1≥D0

∑
I∈D0

|
∑

J∈D1,J⊂I
η(J)− η(I)|+ (o)− lim sup

D1≥D0

∑
J∈D1;J 6⊂I, ∀ I∈D0

|η(J)|+

+ (o)− lim sup
D2≥D0

∑
I∈D0

|
∑

J∈D2,J⊂I
η(J)− η(I)|+ (o)− lim sup

D2≥D0

∑
J∈D2;J 6⊂I, ∀ I∈D0

|η(J)| ≤ pD0 .

By arbitrariness of D0 ∈ D, we get:

(o)− lim sup
(D1,D2)

|S(η,D1)− S(η,D2)| = 0.

So, the net {S(η,D)}D∈D is Cauchy, and hence it is convergent, by virtue of Dedekind com-

pleteness of R (see also [8]).

Definition 3.5 We say that η is quasi-subadditive if

(o)− lim
D0∈D

(o)− lim sup
D≥D0

∑
I∈D0

[
∑

J∈D,J⊂I
η(J)− η(I)]− = 0.
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It is readily seen that, if α, β ∈ IR+
0 and η1, η2 are quasi-subadditive, then α η1 + β η2 is

quasi-subadditive too: indeed, it is enough to recall that

(a+ b)− ≤ a− + b−; (α a)− = α a− ,

∀ a, b ∈ R and α ∈ IR+
0 (see also [6]).

Theorem 3.6 Let η be positive, quasi-subadditive and such that

(o)− lim sup
D∈D

S(η,D)

exists in R. Then, η is quasi-additive.

Proof: First of all, we prove (BC)-integrability of η. Let D ≥ D0 ∈ D. We have:

S(η,D)− S(η,D0) =
∑
J∈D

η(J)−
∑
I∈D0

η(I) =
∑
I∈D0

[
∑

J∈D, J⊂I
η(J)− η(I)] +

∑
J∈D;J 6⊂I, ∀ I∈D0

η(J) ≥

≥
∑
I∈D0

[
∑

J∈D, J⊂I
η(J) − η(I)] ≥ −

∑
I∈D0

[
∑

J∈D, J⊂I
η(J) − η(I)]− ≥ −pD0 ,

where pD0 ↓ 0 (indeed, a ≥ −a−, ∀ a ∈ R), and hence

l (1) ≥ S(η,D0)− pD0 , ∀ D0 ∈ D,

where l (1) = (o)− lim infD∈D S(η,D). From this, it follows that

(o)− lim sup
D0∈D

S(η,D0) ≤ l (1) + (o)− lim sup
D0∈D

pD0 = l (1).

So, there exists in R the quantity l ≡ (o)− limD∈D S(η,D), and thus η is (BC)-integrable.

Now we shall use the following equalities: |a| = a+ +a−, a = a+−a−, and hence |a| = a+2 a−.

Pick arbitrarily D, D0 ∈ D, with D ≥ D0. We have:

0 ≤
∑
I∈D0

|
∑

J∈D, J⊂I
η(J) − η(I)|+

∑
J∈D; J 6⊂I, ∀ I∈D0

η(J) =

=
∑
I∈D0

[
∑

J∈D, J⊂I
η(J) − η(I)] + 2

∑
I∈D0

[
∑

J∈D, J⊂I
η(J) − η(I)]− +

∑
J∈D; J 6⊂I, ∀ I∈D0

η(J) ≤

≤ |
∑
J∈D

η(J)− l|+ |
∑
I∈D0

η(I) − l|+ 2
∑
I∈D0

[
∑

J∈D, J⊂I
η(J) − η(I)]− ≤ 2 pD0 + 2 qD0 ,

for some suitable nets (pD)D, (qD)D in R, with pD ↓ 0, qD ↓ 0. Taking the (o)− lim sup, we get:

0 ≤ (o)− lim sup
D≥D0

∑
I∈D0

|
∑

J∈D, J⊂I
η(J) − η(I)|, (o)− lim sup

D≥D0

∑
J∈D; J 6⊂I, ∀ I∈D0

|η(J)| ≤
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≤ (o)− lim sup
D≥D0

∑
I∈D0

|
∑

J∈D, J⊂I
η(J) − η(I)|+ (o)− lim sup

D≥D0

∑
J∈D; J 6⊂I, ∀ I∈D0

|η(J)| ≤

≤ 2 pD0 + 2 qD0 .

Thus, it follows that η is quasi-additive, that is the assertion. 2

Definition 3.7 Given a set function η : A → R , define η+, η−, |η| : A → R as follows:

η+(I) ≡ [η(I)]+, η−(I) ≡ [η(I)]−, |η|(I) ≡ |η(I)| , ∀ I ∈ A.

Theorem 3.8 If η is quasi-additive, then η+, η− and |η| are quasi-subadditive.

The proof is analogous to the one given in [5].

Definition 3.9 Under the same notations as above, let M ⊂ X, and define S(η,M,D) ≡∑
I∈D s(I,M) η(I), where:

s(I,M) ≡


1, if I ⊂M

0, if I 6⊂M.

We say that η is Burkill-Cesari integrable ((BC)-integrable ) on M if there exists in R the limit

(o)− lim
D∈D

S(η,M,D).

When this limit exists, we denote it by the symbols (BC)−
∫
X [η,M ] or (BC)−

∫
M η .

The set function η : A → R is quasi-additive on M if

(o)− lim
D0∈D

(o)− lim sup
D≥D0

∑
I∈D0

s(I,M) |η(I)−
∑
J∈D

s(J, I) η(I)| = 0

and

(o)− lim
D0∈D

(o)− lim sup
D≥D0

∑
J∈D

s(J,M) [1−
∑
I∈D0

s(J, I) s(I,M)]|η(J)| = 0 .

We say that η is quasi-subadditive on M if

(o)− lim
D0∈D

(o)− lim sup
D≥D0

∑
I∈D0

s(I,M) [
∑
J∈D

s(J, I) η(J)− η(I)]− = 0 .

It is easy to check that, if η is quasi-subadditive, then it is quasi-subadditive on each set

M ∈ A.

6



Theorem 3.10 If η is quasi additive, and
∫
X |η| exists in R, then η is quasi additive on every

set M ∈ A.

Proof: Let M ∈ A. By Theorem 3.8, |η|, η+, η− are positive and quasi subadditive, and so

they are quasi subadditive on M. So,

0 ≤
∫
M

η+ ,

∫
M

η− ≤
∫
M
|η| ≤

∫
X
|η|

exist in R, and hence |η|, η+, η− are quasi-additive on M, by reasoning as in Theorem 3.6.

Thus, η = η+ − η− is quasi-additive on M, that is the assertion. 2

4 Integrals of Riesz-space-valued functions with respect to real-

valued measures

Now we compare the introduced Burkill-Cesari-type integral with other integrals, existing in the

literature.

Let R be a Dedekind complete Riesz space, u : [a, b]→ R be a bounded map. In [1], we defined a

Riemann - type integral, which can be defined equivalently as a ”Mengoli-Cauchy” type integral.

Definition 4.1 Given an interval [a, b] ⊂ IR, we call division of [a, b] any finite set {x0, x1, . . . , xn} ⊂

[a, b], where x0 = a, xn = b, and xi < xi+1, ∀ i = 0, . . . , n. We denote by D the class of all

divisions of [a, b].

We call mesh of a division D the quantity δ(D) ≡ maxi (xi − xi−1), and say that D1 ≥ D2 if

δ(D1) ≤ δ(D2).

A division D is identified with the collection of intervals [xi−1, xi|, where

[α, β| ≡


[α, β[ ifβ 6= b

[α, β] ifβ = b.

We now recall some definitions of integral given in [1].

Definition 4.2 Let R be a Dedekind complete Riesz space, and u : [a, b]→ R a bounded map.

We say that a map g : [a, b] → R is a step function with respect to D if there exist n + 1

points x0 ≡ a < x1 < . . . < xn ≡ b, such that g is constant in each interval of the type ]xi−1, xi[

(i = 1, . . . , n). If g is a step function, we put
∫ b
a g(t) dt ≡

∑n
i=1 (xi − xi−1) · g(ξi) where ξi is

an arbitrary point of ]xi−1, xi[.
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We call upper integral [resp. lower integral ] of u the element of R given by

inf
v∈Vu

∫ b

a
v(t) dt [ sup

s∈Su

∫ b

a
s(t) dt],

where

Vu ≡ {v : v is a step function , v(t) ≥ u(t), ∀ t ∈ [a, b]}

Su ≡ {s : s is a step function , s(t) ≤ u(t), ∀ t ∈ [a, b]}.

We say that a bounded function u : [a, b] → R is Riemann integrable (or (R)-integrable), if its

lower integral coincides with its upper integral, and, in this case, we call integral of u (and write∫ b
a u(t) dt) their common value, and we indicate it by

(R)−
∫ b

a
u(t) dt.

Definition 4.3 Let [a, b] ⊂ IR,R be as above, and u : [a, b] → R be a map. We say that u is

Mengoli-Cauchy integrable ( (MC)-integrable ) if there exists an element I ∈ R such that

(o)− lim
D∈D

|
n∑
i=1

u(zi)(xi − xi−1)− I| = 0,

uniformly with respect to zi ∈ [xi−1, xi] (i = 1, . . . , n), and we write (MC)−
∫ b
a u(t) dt ≡ I.

Every Mengoli-Cauchy integrable function is bounded. The following results hold (see also [2]):

Theorem 4.4 Let u : [a, b] → R be Mengoli-Cauchy integrable. Then, u is bounded and Rie-

mann integrable, and

(R)−
∫ b

a
u(t) dt = (MC)−

∫ b

a
u(t) dt.

Theorem 4.5 Let u : [a, b]→ R be Riemann integrable. Then, u is Mengoli-Cauchy integrable,

and

(MC)−
∫ b

a
u(t) dt = (R)−

∫ b

a
u(t) dt.

Definition 4.6 A map u : [a, b]→ R is called continuous at the point x0 ∈ [a, b] if

(o)− lim
x→x0

u(x) = u(x0).

A function u : [a, b]→ R is said to be differentiable at x0 if

(o)− lim
x→x0

u(x)− u(x0)
x− x0

exists in R.
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Remark 4.7 We note that there exist Riemann integrable functions u : [a, b]→ R, which are

discontinuous at every x ∈]a, b[.

Indeed, let [a, b] ≡ [0, 1], R ≡ IR[0,1], u(s) ≡ χ[0,s], ∀ s ∈ [0, 1]. For each x ∈]0, 1[, we have:

lim
t→x+

u(t) = χ[0,x], lim
t→x−

u(t) = χ[0,x[,

and hence

lim sup
t→x

u(t)− lim inf
t→x

u(t) = χ{x} 6≤
1
2
.

However, u is Riemann integrable. Put I(s) ≡ (R)−
∫ s

0
u(t) dt. It is easy to check that

I(s)(x) =


0 if x ≥ s

s− x if x < s

with ∀ s, x ∈ [0, 1], and that the ”right derivative” of I(s) is u(s), ∀ s ∈ [0, 1].

Moreover, it is easy to prove that, if u : [a, b] → R is an (R)-integrable function, then the map

I(s) ≡ (R)−
∫ s

0
u(t) dt is differentiable at the points s for which u is continuous, and in such

points I ′(s) = u(s).

Now, letA be the collection of all subintervals of [a, b] of the type [α, β|, and set η([α, β|) ≡ u(z) (β − α),

where z is an arbitrary point of [α, β]. Obviously, a bounded function u ∈ R[a,b] is (MC)-

integrable if and only if η is (BC)-integrable.

We now prove the following:

Theorem 4.8 If u is (R)-integrable, then η is quasi-additive.

Proof: Without loss of generality, we may assume that u is positive. Indeed, if u is (R)-

integrable, then u+ and u− are (R)-integrable too.

As u is bounded, (o)− lim supD∈D S(η,D) exists in R. So, it will be enough to show that η is

quasi-subadditive, in view of Theorem 3.6.

LetD0 ≡ {[ci−1, ci| : i = 1, . . . , N−1}, D ≡ {[xj−1, xj | : j = 1, . . . , n}, where c0 = a < c1 < . . . < cN−1 = b,

x0 = a < x1 < . . . < xn = b, δ(D) ≤ δ(D0). Moreover, set

M ≡ sup
x∈[a,b]

u(x); Mi ≡ sup
x∈[ci−1, ci]

u(x),

mi ≡ inf
x∈[ci−1, ci]

u(x).
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By virtue of (R)-integrability of u, we have:

∑
I∈D0

|
∑

J∈D, J⊂I
η(J)− η(I)| ≤

∑
I∈D0

(Mi−mi)(ci− ci−1) +M
∑

J∈D, J 6⊂I, ∀ I∈D0

(xj −xj−1) ≤

≤ pD +N δ(D) M,

for some suitable directed net (pD)D, pD ↓ 0. (We note that N = N(D0) depends on D0.) So,

0 ≤ (o)− lim sup
D≥D0

∑
I∈D0

|
∑

J∈D, J⊂I
η(J)− η(I)| ≤ pD0 + inf

D≥D0

N(D0) δ(D) M = pD0 ,

and hence

(o)− lim
D0∈D

(o)− lim sup
D≥D0

∑
I∈D0

|
∑

J∈D,J⊂I
η(J)− η(I)| = 0. 2

Next, we show that quasi-additivity can be applied in a different problem.

Definition 4.9 A map g : [a, b]→ R is said to be of bounded variation if the set

{
∑
I∈D
|qg(I)| : D ∈ D}

is bounded in R, where

qg([u, v|) ≡ g(v)− g(u).

In this case, we set

V (g, [a, b]) ≡ sup{
∑
I∈D
|qg(I)| : D ∈ D}.

The following result holds.

Theorem 4.10 If g : [a, b] → R is of bounded variation and continuous in [a, b], then the

function |qg| is quasi-additive.

Proof: We observe that, in order to prove Theorem 4.10, it is enough to prove quasi-subadditivity

of |qg|. Indeed, quasi-additivity will follow from Theorem 3.6.

Fix D0 ∈ D, D0 ≡ {[ci−1, ci| : i = 1, . . . , N − 1}. By the continuity of g at the points

ci, i = 1, . . . , N − 1, there exists a sequence (pn(ci))n, pn ↓ 0, such that

|qg([u, v])| ≤ pn,whenever a ≤ u ≤ ci ≤ v ≤ b, 0 ≤ v − u ≤ 1
n

(i = 1, . . . , N)
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Let D ∈ D, D ≡ {[xj−1, xj | : j = 1, . . . , k}. with δ(D) ≤ 1
n
.

Put E ≡ {I ∈ D0 : ∃ j, xj ∈ I} (Note that if [α, β| ∈ D0 \ E, then β − α ≤ 1
n

). For

Ii = [ci−1, ci| ∈ E, define di ≡ min{xj : xj ≥ ci−1} and ei ≡ max{xj : xj < ci}. Then

∑
I∈D0

(
∑

J∈D,J⊂I
|qg(J)| − |qg(I)|) ≥

∑
Ii∈E

(|qg([di, ei|)| − |qg(Ii)|) +
∑

Ii∈D0\E
− |qg(Ii)| ≥

≥
∑
Ii∈E

− (|g(di)− g(ci−1)|+ |g(ei)− g(ci)|] +
∑

Ii∈D0\E
(−pn(ci)).

So, ∀ D0 ∈ D,

(o)− lim sup
D≥D0

∑
I∈D0

[
∑

J∈D,J⊂I
|qg(J)| − |qg(I)|]− = 0.

Thus, |qg| is quasi-subadditive. 2

We note that
∫ b
a |qg| = V (g, [a, b]) (see also [4]).

Now, we recall the integral for extended real-valued functions, with respect to R-valued means,

defined in [1].

Definition 4.11 Let X be any set, B ⊂ P(X) be an algebra, R be a Dedekind complete Riesz

space, µ : B → R be a finitely additive positive set function; assume that f : X → IR+
0 is a

measurable function, and u(t) ≡ µ({x ∈ X : f(x) > t}). We say that f is integrable if there

exists in R the quantity

(4.11.1)
∫ +∞

0
u(t) dt ≡ supa>0

∫ a

0
u(t) dt = (o)− lima→+∞

∫ a

0
u(t) dt,

where the integral in (4.11.1) is intended as in Definition 4.2. If f is integrable, we indicate the

element in (4.11.1) by the symbol
∫
X
f dµ.

A measurable function f : X → IR is integrable if both f+, f− are integrable and, in this case,

we set ∫
X
fdµ =

∫
X
f+dµ−

∫
X
f−dµ.

Remark 4.12 It is easy to check that, if f : X → IR+ is integrable (in the monotone sense),

then ∫
X
f dµ = sup

D

n∑
i=1

u(xi)(xi − xi−1) = inf
D

n∑
i=1

u(xi−1)(xi − xi−1),

where D is the class of all finite subsets of [0,+∞[ of the type {x0 = 0, x1, . . . , xn}, n ∈ IN, by

virtue of (decreasing) monotonicity of u.
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Now, letA ≡ {[a, b[: a, b ∈ IR+
0 , a < b}; η(I) ≡ u(xi−1) (xi − xi−1), δ(D) ≡ maxn−1

i=1 (xi − xi−1) + 1
xn
,

∀ D ∈ D. By proceeding analogously as in the previous case, and by virtue of the properties of

the function u, one can prove that a nonnegative function f ∈ IRX is integrable (in the monotone

sense) if and only if η is quasi-additive, and the (BC)-integral of η coincides with
∫
X f dµ.

References

[1] A. BOCCUTO–A. R. SAMBUCINI ”On the De Giorgi-Letta integral with respect to means

with values in Riesz spaces”, to appear on Real Analysis Exchange

[2] A. BOCCUTO–A. R. SAMBUCINI ”Comparison between different types of abstract inte-

grals in Riesz spaces”, (1996), to appear on Rend. Circ. Mat. Palermo

[3] J. C. BRECKENRIDGE ”Burkill-Cesari integrals of quasi additive interval functions”,

Pacific J. Math. 37 (1971), 635-654.

[4] D. CANDELORO ”Riemann-Stieltjes integration in Riesz spaces”, to appear.

[5] L. CESARI ”Quasi-additive set functions and the concept of integral over a variety”, Trans.

Amer. Math. Soc., 102 (1962), 94-113.

[6] W. A. J. LUXEMBURG - A. C. ZAANEN ”Riesz Spaces”, I , (1971), North-Holland

Publishing Co.

[7] A. MARTELLOTTI ”On integration with respect to lctvs-valued finitely additive mea-

sures”, Rend. Circ. Mat. Palermo, Serie II, 43 (1994), 181-214.

[8] P. MCGILL ”Integration in vector lattices”, J. Lond. Math. Soc., 11 (1975), 347-360.

[9] C. VINTI,”L’ integrale di Weierstrass”, Ist. Lombardo Accad. Sci. Lett. (A), 92 (1958),

423-434.

[10] C. VINTI,”L’ integrale di Weierstrass-Burkill, Atti Sem. Mat. Fis. Univ. Modena”, 18

(1969), 295-316.

[11] G. WARNER ”The Burkill-Cesari integral”, Duke Math. J. 35 (1968), 61-78.

12


