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Università degli Studi di Perugia

Dipartimento di Matematica e Informatica
via Vanvitelli, 1

I-06123 Perugia, Italy
boccuto@yahoo.it, boccuto@dipmat.unipg.it

Beloslav Riečan
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1 Introduction

In [1, 5, 14] some Kurzweil-Henstock, Stieltjes-type integrals were investigated for functions,
defined in (possibly unbounded) subintervals of the extended real line, and with values in
metric semigroups. Particular cases of such structures were also studied, for example, in
[15, 16, 17] (see also the bibliography of [5]).

In this paper we introduce the two dimensional Kurzweil-Henstock integral for metric
semigroup-valued functions, defined in (not necessarily bounded) subrectangles of the ex-
tended Cartesian plane. We prove for it convergence results both with respect to sequences
of functions (convergence theorems related with equiintegrability), and with respect to in-
creasing families of sets (the Hake theorem). Moreover, following a line of research on double
integration, see for example [2, 12, 13] in the context of Riesz spaces, we give also a version
of the Fubini theorem which generalizes a similar result proved in [14] for mappings defined
in a compact subrectangle of R2.

For other related results and studies existing in the literature about these types of inte-
grals, see also [3, 4, 8, 9, 10, 11].

2 Preliminaries

Definition 2.1. A metric semigroup is a structure (X, ρ, +, ·), where
ρ : X × X → R, + : X × X → X, · : R × X → X satisfy the following conditions:

(i) (X, ρ) is a complete metric space;

(ii) (X, +) is a commutative semigroup endowed with a neutral element 0;

(iii) ρ(w + y, z + t) ≤ ρ(w, z) + ρ(y, t) for any w, y, z, t ∈ X;

(iv) ρ(α w, αy) ≤ |α| ρ(w, y) for all α ∈ R and w, y ∈ X;

(v) α(w + y) = αw + αy for each α ∈ R, w, y ∈ X;

(vi) (α + β)w = αw + βw for every α, β ∈ R+
0 , w ∈ X, 0 · w = 0 and 1 · w = w for each

w ∈ X.

A metric semigroup (X, ρ, +, ·) is said to be invariant, if

ρ(w + z, y + z) = ρ(w, y)

for any w, y, z ∈ X.
An example of metric semigroup, which is not a group, is the set of all fuzzy numbers

(see also [1, 5]).
For what concerns the Kurzweil-Henstock integral and its properties for functions with

values in a metric semigroup X we refer to [5, § 3]. For the sake of simplicity we recall here
only the main definitions and the Henstock Lemma.

From now on, let B be a connected subset of the extended real line and denote with
a < b ∈ R̃ its endpoints. Moreover, for every measurable set E ⊂ R̃(R̃

2
), denote by |E| or

λ1(E)(λ2(E)) its Lebesgue one- (two-)dimensional measure.
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A gauge on [a, b] is a map δ which associates to every point of [a, b] an open subset of R̃,
such that x ∈ δ(x) for all x ∈ [a, b] and δ(x) is bounded whenever x ∈ [a, b]∩ R.

Given a gauge δ on [a, b], a partition Π = {(Ik, tk), k = 1, . . . , p} of [a, b] is said to be
δ-fine if tk ∈ Ik ⊂ δ(tk), k = 1, . . . , p.

Definition 2.2. ([5, Definition 3.2]) We say that a function f : [a, b] → X is Kurzweil-
Henstock integrable (in short integrable ) on [a, b] if there exists an element I ∈ X such that
for all ε > 0 there is a gauge δ on [a, b] with

ρ


I,

∑

k=1,...,p
λ1(Ik)<+∞

λ1(Ik) f(tk)


 ≤ ε (1)

whenever Π = {(Ik, tk), k = 1, . . . , p} is a δ-fine partition of [a, b]. In this case we say that I

is the KH-integral of f , we denote the element I by the symbol
∫ b

a

f and the sum in (1)

(Riemann sum) by
∑

Π

f .

Lemma 2.3. [5, Proposition 4.1] (Henstock Lemma) Let f : [a, b] → X be integrable, ε > 0,
and δ be a gauge on [a, b] such that

ρ

(∑

Π

f,

∫ b

a

f

)
≤ ε

whenever Π is any δ-fine partition of [a, b]. Let Ai ⊂ [a, b], i = 1, . . . , m, be nonoverlapping
intervals (one or two of them may be halflines) and ti ∈ Ai be such that

Ai ⊂ δ(ti) (i = 1, . . . , m).

Then

ρ




∑

i=1,...,m,
λ1(Ai)<+∞

λ1(Ai) f(ti),
m∑

i=1

∫

Ai

f


 ≤ ε.

3 The integral in the two-dimensional case

Proceeding analogously as in [1, 2], it is possible to define a Kurzweil-Henstock type integral
for metric semigroup-valued functions, defined in a (possibly unbounded) closed subrectangle

J of R̃
2
, J = H × K. We denote by C the family of all closed subrectangles of J .

• A gauge on J is a map δ defined on J and taking values in the set of all open subsets
of R̃

2
, such that ~t ∈ δ(~t ) for every ~t ∈ J and δ(~t ) is bounded whenever ~t ∈ R2.

• A partition of J is a finite collection Π = {(Wi,~ti) : i = 1, . . . , q} such that
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(i)
⋃q

i=1 Wi = J ;

(ii) ~ti ∈ Wi, Wi ∈ C;

(iii) λ2(Wi ∩ Wj) = 0 whenever i 6= j.

A collection Π satisfying axioms (ii) and (iii), but not necessarily (i), is called decom-
position of J . The partition or decomposition Π is δ-fine if Wi ⊂ δ(~ti) (i = 1, 2, . . ., q).

Observe that every gauge δ on J has a δ-fine partition (of J), see [7, Lemma 6.2.6].

Definition 3.1. Given any partition Π = {(Wi,~ti), i = 1, . . . , q} of J and a function
f : J → R, the Riemann sum of f is

∑

Π

f :=
∑

i=1,...,q
λ2(Wi)<+∞

λ2(Wi)f(~ti),

We now formulate our definition of Kurzweil-Henstock integral for X-valued functions
defined on a closed (not necessarily bounded) subrectangle J ⊂ R̃

2
.

Definition 3.2. We say that a two-variable function f : J → R is Kurzweil-Henstock
integrable (in short integrable ) on J if there exists an element I ∈ R such that for every
ε > 0 there corresponds a gauge δ with

ρ

(
I,
∑

Π

f

)
≤ ε (2)

whenever Π = {(Wi,~ti), i = 1, . . . , q} is a δ-fine partition of J . In this case we say that I is

the Kurzweil-Henstock integral of f , and denote the element I by the symbol
∫

J

f .

It is easy to check that the integral just defined is uniquely determined, linear and
satisfies the Bolzano-Cauchy condition.

4 Convergence theorems

We begin with the two-dimensional version of the Henstock lemma (see also [5, Proposition
4.1]).

Lemma 4.1. Let f : J → X be integrable, ε > 0, and δ be a gauge on J such that

ρ

(∑

Π

f,

∫

J

f

)
≤ ε

whenever Π is any δ-fine partition of J . Let Ai ⊂ J , i = 1, . . . , m, be elements of C, with
λ2(Ai ∩ Aj) = 0 whenever i 6= j, and ~ti ∈ Ai be such that

Ai ⊂ δ(~ti) (i = 1, . . . , m).
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Then

ρ




∑

i=1,...,m,
λ2(Ai)<+∞

λ2(Ai)f(~ti),
m∑

i=1

∫

Ai

f


 ≤ ε.

Proof: Let A◦
i be the interior of Ai, i = 1, . . . , m. Since the Ai’s are non-overlapping,

the set J \ ∪m
i=1A

◦
i is empty or it is the union of non-overlapping (possibly unbounded)

rectangles B1, . . . , Bp. Let η > 0. Since f is integrable on each Bj , for each j = 1, . . . , p
there exists a gauge δj on Bj such that

δj(x) ⊂ δ(x) for all x ∈ Bj ,

and

ρ


∑

Πj

f,

∫

Bj

f


 <

η

p + 1

for every δj-fine partition Πj of Bj . Let now Πj be any δj-fine partition of Bj . We observe
that

Π ≡ {(Ai,~ti), i = 1, . . . , m} ∪ (∪p
j=1 Πj)

is a δ-fine partition of J . Then we have:

ρ




∑

i=1,...,m,
λ2(Ai)<+∞

λ2(Ai) f(~ti),
m∑

i=1

∫

Ai

f




= ρ




∑

i=1,...,m,
λ2(Ai)<+∞

λ2(Ai) f(~ti) +
p∑

j=1

∑

Πj

f,

m∑

i=1

∫

Ai

f +
p∑

j=1

∑

Πj

f




≤ ρ

(∑

Π

f,

∫

J

f

)
+ ρ

(
m∑

i=1

∫

Ai

f +
p∑

j=1

∫

Bj

f,

m∑

i=1

∫

Ai

f +
p∑

j=1

∑

Πj

f




≤ ε + ρ




p∑

j=1

∫

Bj

f,

p∑

j=1

∑

Πj

f


 ≤ ε +

p∑

j=1

ρ



∫

Bj

f,
∑

Πj

f




< ε +
p∑

j=1

η

p + 1
< ε + η.

Since the inequality

ρ




∑

i=1,...,m,
λ2(Ai)<+∞

λ2(Ai)f(~ti),
m∑

i=1

∫

Ai

f


 < ε + η

holds for any η > 0, then we get the assertion. �
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Definition 4.2. A sequence of integrable functions (fk : J → X)k is said to be equiintegrable
if to any ε > 0 there exists a gauge δ on J such that

ρ

(∑

Π

fk,

∫

J

fk

)
≤ ε

for any δ-fine partition Π and every k ∈ N.

Theorem 4.3. Let (fk : J → X)k be an equiintegrable sequence and let

lim
k→+∞

ρ(fk(~t), f(~t)) = 0

for any ~t ∈ J . Then f is integrable on J , and

lim
k→+∞

ρ

(∫

J

fk,

∫

J

f

)
= 0.

Proof: Fix ε > 0. There exist an integrable function E : J ∩ R2 → R+, with
∫

J

E ≤ ε

2

(for example, E(~t ) =
ε

16
e−|~t|2 , ~t ∈ J ∩ R2), and a gauge δ0 on J , such that

∑

i=1,...,n,
λ2(Ii)<+∞

λ2(Ii) E(~ti) ≤ ε

for each δ0-fine partition Π of J , Π = {(Ii,~ti), i = 1, . . . , n}. Let now ε > 0, δ be as in
Definition 4.2, δ̂ = δ ∩ δ0, and Π be any δ̂-fine partition of J . Then, definitely on k, we get

ρ

(∑

Π

fk,
∑

Π

f

)
≤

∑

i=1,...,n,
λ2(Ii)<+∞

λ2(Ii) E(~ti) ≤ ε.

So,

lim
k→+∞

ρ

(∑

Π

fk,
∑

Π

f

)
= 0.

Thanks to equiintegrability, the sequence
(∫

J

fk

)

k

of elements of X is Cauchy, and by

completeness of (X, ρ) there exist I ∈ X, a gauge δ∗ on J and an integer k0 such that

ρ

(
I,

∫

J

fk

)
≤ ε for any k ≥ k0,

and for each δ∗-fine partition Π of J , there is k1 ≥ k0, such that

ρ

(∑

Π

fk,
∑

Π

f

)
≤ ε for any k ≥ k1 ≥ k0.
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Moreover, for each δ ∩ δ∗-fine partition Π, we get:

ρ

(
I,
∑

Π

f

)
≤ ρ

(∑

Π

f,
∑

Π

fk1

)
+ ρ

(∑

Π

fk1 ,

∫

J

fk1

)
+ ρ

(
I,

∫

J

fk1

)
≤ 3ε.

So f is integrable and I =
∫

J

f , and this is enough to prove the assertion, since the limit

follows easily. �

We now prove a Hake-type theorem.

Theorem 4.4. Let f : J → X, with f(x, y) = 0 whenever x = ±∞ or y = ±∞. Suppose
that f is integrable on each A ∈ C, A 6= J , and that there is I ∈ X satisfying the following
condition:

(4.4.1) for all ε > 0 there corresponds a set A∗ 6= J , with the properties that A∗ is a finite
union of non-overlapping elements of C and

ρ

(
I,

∫

A

f

)
≤ ε

whenever J 6= A ⊃ A∗ and A is a finite union of non-overlapping sets of C.

Then f is integrable on J and
∫

J

f = I .

Proof: Let (An)n be a sequence in C with An ⊂ An+1 for any n ∈ N and ∪∞
n=1An = J ∩ R2.

Note that for every n ∈ N and ε > 0 there exists a gauge δn on An with

ρ

(∑

Πn

f,

∫

An

f

)
≤ ε

2n
(3)

for any δn-fine partition Πn of An.
Put Cn = An\An−1, A0 = ∅. For every ~t ∈ J∩R2 there exists exactly one positive integer

n = n(~t) with ~t ∈ Cn. Choose now a gauge δ on J with the property that δ(~t) ⊂ δn(~t)(~t)
and δ(~t) ⊂ A◦

n(~t)
whenever ~t ∈ J ∩ R2, and δ(x, y) ⊂ J \ A∗ whenever x = ±∞ or y = ±∞

(here, A∗ is the set in (4.4.1)). Let Π := {(Ui,~ti) : i = 1, . . . , q} be a δ-fine partition of J .
For every i = 1, . . . , q we get: Ui ⊂ δ(~ti) ⊂ An(~ti)

, and Ui ⊂ δn(~ti)
(~ti).

If J is unbounded, then there exists at least (Ui0 ,~ti0) ∈ Π, with i0 ∈ {1, 2, . . . , q}, such
that ~ti0 =: (x0, y0) ∈ Ui0 and λ2(Ui0) = +∞. Then x0 = ±∞ or y0 = ±∞. If not, then for
some positive integer n

~ti0 ∈ Ui0 ⊂ δ(~ti0) ⊂ δn(~ti0 ) ⊂ An(~ti0 ) ⊂ J ∩ R2,

a contradiction.
Let I be the set of those indexes i for which λ2(Ui) < +∞. Let A = ∪i∈I Ui: since Π

is a δ-fine partition of J , by construction we get: A ⊃ A∗. Without loss of generality, we
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can suppose that A ∈ C, since the case of finite unions of non-overlapping elements of C is
obtained by additivity. By (4.4.1) we have

ρ

(
I,

∫

A

f

)
≤ ε.

By the Henstock Lemma 4.1 we obtain

ρ


 ∑

~ti∈Cn

λ2(Ui) f(~ti),
∑

~ti∈Cn

∫

Ui

f


 ≤ ε

2n

for all n ∈ N. By additivity, we get:
∫

A

f =
∑

i∈I

∫

Ui

f,

and hence

ρ

(∑

i∈I

λ2(Ui) f(~ti),
∫

A

f

)
= ρ

(∑

i∈I

λ2(Ui) f(~ti),
∑

i∈I

∫

Ui

f

)

≤
∞∑

n=1



ρ


 ∑

~ti∈Cn

λ2(Ui) f(~ti),
∑

~ti∈Cn

∫

Ui

f







≤
∞∑

n=1

ε

2n
= ε.

Thus we get:

ρ

(
I,
∑

Π

f

)
= ρ

(
I,
∑

i∈I
λ2(Ui) f(~ti)

)

≤ ρ

(∑

i∈I
λ2(Ui) f(~ti),

∫

A

f

)
+ ρ

(
I,

∫

A

f

)
≤ 2 ε.

Thus the assertion follows. �

5 More properties of the integral and a Fubini Theorem

Similarly as [5, Proposition 3.12] and [14, Lemma 7], it is possible to prove the following
properties:

Lemma 5.1. Let f : J → X be integrable on J and g : J → X with f = g in the complement
of a λ2-null set W ⊂ J . Then g is integrable on J too and the two integrals coincide.
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Proof: Let I =
∫

J

f and fix ε > 0. Then a gauge δ on J can be found, with

ρ

(
I,
∑

Π

f

)
≤ ε

2

whenever Π is a δ-fine partition of J . Set

Wl = {~t ∈ J : ρ(f(~t), g(~t)) ∈ (l − 1, l]}, l ∈ N; W = ∪∞
l=1 Wl.

For each l, as λ(Wl) = 0, there exists a set Gl ⊃ Wl which is union of countably many open
intervals with total length less than

ε

2l+1 l
. Put

δ(~t) =
{

δ(~t), if ~t 6∈ W ;
Gl, if ~t ∈ Wl.

Choose an arbitrary partition Π of J , Π = {(Li,~ti), i = 1, . . . , n}. We have:

ρ

(
I,

n∑

i=1

λ2(Li) g(~ti)

)
= ρ


I,

∑

~ti 6∈W

λ2(Li)g(~ti) +
∑

~ti∈W

λ2(Li)g(~ti)


 =

ρ


∑

~ti 6∈W

λ2(Li)f(~ti) +
∑

~ti∈W

λ2(Li)g(~ti) +
∑

~ti∈W

λ2(Li)f(~ti), I +
∑

~ti∈W

λ2(Li)f(~ti)


 =

ρ




n∑

i=1

λ2(Li)f(~ti) +
∑

~ti∈W

λ2(Li)g(~ti), I +
∑

~ti∈W

λ2(Li)f(~ti)


 ≤

ρ

(
I,
∑

Π

f

)
+
∑

~ti∈W

λ2(Li) ρ(g(~ti), f(~ti)) ≤
ε

2
+

∞∑

l=1

∑

~ti∈Wl

λ2(Li) ρ(g(~ti), f(~ti)) ≤

ε

2
+

∞∑

l=1

l
∑

~ti∈Wl

λ2(Li) ≤
ε

2
+

∞∑

l=1

l
ε

2l+1 l
= ε.

From this it follows that g is integrable on J and
∫

J

g = I. This concludes the proof. �

Moreover we have also that:

Lemma 5.2. Let f : J → X be integrable on J = H × K, and set N := {y ∈ K : f(·, y) is

not integrable on H}. Then N is null, that is
∫

K

1N = 0.

Proof: Let (Rn)n be a sequence of pairwise nonoverlapping closed bounded rectangles,
Rn := [an, bn] × [cn, dn], n ∈ N, such that ∪∞

n=1 Rn = J ∩ R2.
We know that f is integrable on each rectangle Rn. From [14, Lemma 5] it follows that,

for each n ∈ N, the set Nn := {y ∈ [cn, dn] : f(·, y) is not integrable on [an, bn]} is null, that
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is
∫ dn

cn

1Nn = 0 (see also [7]). Since every countable union of null sets is still a null set, the set

N := {y ∈ K : f(·, y) is not integrable on H} is null, and from this we get the assertion. �

We are now able to give our version of the Fubini Theorem, thanks to Lemmata 5.1 and
5.2.

Theorem 5.3. (Fubini Theorem) Let f : J = H × K → R be integrable and set

Q(x) =
∫

K

f(x, y) dy.

Then, Q is integrable for (almost all) x ∈ H and

∫

H

(∫

K

f(x, y)dy

)
dx =

∫∫

H×K

f.

Proof: Observe that, by Lemma 5.2, Q is integrable for x ∈ H \ N , where λ1(N ) = 0.
Without loss of generality, we can define Q(x) = 0 for each x ∈ N and so, thanks to Lemma
5.1, we can assume that Q is integrable on the whole of H. Put M = N × K. Then
λ2(M ) = 0.

Fix arbitrarily ε > 0. By the Henstock Lemma there is a gauge δ on J with

ρ

(
q∑

l=1

λ2(Zl) f(~tl),
q∑

l=1

∫

Zl

f

)
≤ ε (4)

whenever Π = {(Zl,~tl) : l = 1, . . . , q} is a δ-fine partition of J .
Let now h∗ be a positive real-valued integrable map, defined on H. There exist a gauge

∆0 on H and a positive constant C0 with the property that
∑

π0

h∗ =
∑

π0

|Vj|h∗(ηj) ≤ C0

for every ∆0-fine partition π0 of H, π0 = {(Vj , ηj) : j = 1, . . . , s}.
Set now ~t = (x, y). Given a gauge δ(x, y) = (U1(x, y) × U2(x, y)), for any fixed x ∈ H

the mapping δK,x(y) = U2(x, y) is a gauge on K. Analogously, for every y ∈ K, the map
δH,y(x) = U1(x, y) is a gauge on H. These two mappings are the projections of δ.

As in [7, Theorem 6.6.3], for x ∈ H \ N let τ (x) = {(Ki(x), yi(x)) : i = 1, . . . , n(x)} be
a δK,x-fine partition for which

ρ


Q(x),

n(x)∑

i=1

f(x, yi(x)) |Ki(x)|


 ≤ h∗(x);

and for any x ∈ N let φ(x) be a δK,x-fine partition. Set σ(x) = τ (x) whenever x ∈ H \ N
and σ(x) = φ(x) if x ∈ N .
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Let ∆ be a gauge on H, according with [7, Lemma 6.6.2], with the property that,
whenever πH = {(Hj, zj) : j = 1, . . . , m} is a ∆-fine partition of H, then the associated
compound partition

{(Hj × Ki(zj), (zj , yi(zj))) : j = 1, . . . , m, i = 1, . . . , n(zj)} (5)

is δ-fine.
Without loss of generality, we can choose ∆ such that ∆(x) ⊂ ∆0(x) for every x ∈ H.

Pick a ∆-fine partition πH = {(Hj, zj) : j = 1, . . . , m} of H, and let

π = {(Hj × Ki(zj), (zj, yi(zj))) : j = 1, . . . , m, i = 1, . . . , n(zj)}

be as in (5). We have:

ρ

(
I,
∑

πH

Q(zj)|Hj|

)
≤ ρ


∑

πH

|Hj|Q(zj),
∑

πH

∑

σ(zj )

f(zj , yi(zj)) |Hj| |Ki(zj)|




+ ρ

(∑

π

f(zj , yi(zj)) |Hj| |Ki(zj)|,
∑

π

∫

Hj×Ki(zj )

f

)

≤
∑

πH

|Hj|ρ


Q(zj),

∑

σ(zj)

f(zj , yi(zj))|Ki(zj)|




+ ρ

(∑

π

f(zj , yi(zj)) |Hj| |Ki(zj)|,
∑

π

∫

Hj×Ki(zj )

f

)

≤ ε
∑

πH

|Hj|h∗(zj) + ε ≤ C0 ε + ε.

This concludes the proof. �

Remark 5.4. The function Q represents the integral of the ”x-projections” with respect to
the variable y. The Lemma 5.2 allows us to say that, in the context of metric semigroups,
the map Q is well-defined in the complement of a λ1-null sets. Similar results ([2, Theorem
4.3]) were given in the context of Riesz spaces.
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