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1. Introduction

A Perron-type integral of order k ∈ N, for the case of real-valued functions, was in-
troduced by R. D. James [16,17], see also [24] in connection with some applications
to the problem of recovering the coefficients of trigonometric series by generalized
Fourier formulae. Since then this type of integrals was studied in numerous pa-
pers [1, 9–12]. U. Das and A. G. Das gave in [14] some versions of integration by
parts formula for this integral. Among related tools, used in this theory, we mention
some generalizations of the concept of convexity and divided differences [9,20,21].

Perron-type integrals for Riesz-space-valued functions were defined in [4]
and [6]. In the present paper we investigate some fundamental properties of the
Perron integrals of order 1 and 2 in the Riesz-space-valued case and obtain a ver-
sion of integration by parts formulae for these integrals. For technical reasons, in
our paper the involved major and minor functions of order 1 and 2 are taken to
be regular enough. This gives us an opportunity to replace, in the definition of the
second order integral on [a, b] ⊂ R, the “boundary”-type conditions at the points a
and b, by the “initial”-type conditions at the point a. In this respect our definition
is similar to the one used by P. S. Bullen [10] in the real-valued case and is slightly
different from the one adopted by R. D. James in [16]. In the real-valued case it
is known that some of regularity assumptions we are imposing here on major and
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minor functions do not make the class of the integrable functions smaller (see for
example [8,22]). In the case of general Riesz spaces even the problem whether the
Perron integral of order 1, defined by continuous major and minor functions, is
equivalent to the one defined without the continuity conditions, is still open.

An important tool used here is the Maeda–Ogasawara–Vulikh Theorem on
representation of Archimedean Riesz spaces as suitable spaces of continuous func-
tions (see [2,7,19]). Another important notion on which our definition of the major
and minor functions is based, is the one of the global limit studied in Section 3.
Related notions of the global derivative and the global continuity are defined in
Section 4. Section 5 contains some information on Riemann and Riemann–Stieltjes
integrals for the Riesz-space-valued case. The definitions of the Perron integrals of
order 1 and 2 and some properties of these integrals are given in Sections 6 and 7.
The main results of the paper, related to the integration by parts formulae are
obtained in Section 8.

2. Preliminaries

Let R be a Riesz space. If y ∈ R, we say that y > 0 when y ≥ 0 and y �= 0. We
denote by R+ and R+

0 the sets of those elements y ∈ R such that y > 0 and y ≥ 0
respectively. We add to R two extra elements, ±∞, extending in a natural way
ordering and operations and denoting R = R ∪ {±∞}. By convention, we will say
that the supremum of any unbounded above nonempty subset of R is +∞ and the
infimum of any unbounded below nonempty subset of R is −∞.

A Dedekind complete Riesz space R is said to be super Dedekind complete if
every nonempty subset R1 bounded from above contains a countable subset with
the same supremum as R1.

Given a net (yη)η∈Λ in R, where (Λ,≥) �= ∅ is a directed set, let

lim sup
η

yη = inf
η

, [sup
ζ≥η

yζ ] , lim inf
η

yη = sup
η

[ inf
ζ≥η

yζ ] .

We say that (yη)η order converges (or (o)-converges ) to y ∈ R if y = lim supη yη =
lim infη yη, and we write (o) limη∈Λ yη = y. An (o)-net (yη)η∈Λ is a monotone
decreasing net of elements of R, such that infη∈Λ yη = 0. In particular this defines
also the notions of (o)-limit for sequences and of (o)-sequence.

Assumption 2.1. A super Dedekind complete Riesz space R is called an alge-
bra if (R, R, R) is a product triple, namely if there exists a commutative map
·, · : R × R → R, which we will call product, such that the distributive laws and
usual compatibility with order hold, and, if (aλ)λ∈Λ is a net (o)-converging to a,
then infλ (aλ · y) = a · y for every y ∈ R+

0 .

For example, the Riesz spaces R
N and L0(X,B, μ) [18, Example 23.3.(iv),

pp. 126–12] and [23, p. 70], where (X,B, μ) is a measure space with μ positive,
σ-additive and σ-finite, are algebras with respect to the usual product.

We remind now the definition and some properties of convex functions.
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Definition 2.2. Given a function f : [a, b] → R, we say that f is convex in [a, b]
if for every x1, x2 ∈ [a, b] such that x1 < x2 and for each t ∈ [0, 1] we have
f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2).

Remark 2.3. Analogously as in the classical case, it is easy to show that a func-
tion f is convex if and only if the function

ϑ(t1, t2) :=
f(t1) − f(t2)

t1 − t2
, t1, t2 ∈ [a, b] , t1 �= t2 ,

is an increasing function with respect to each variable separately.

Similarly, one can prove the following

Proposition 2.4. Let f : [a, b] → R be a convex bounded function and δ ∈]0, b−a
2 [.

Then for every t1, t2 ∈ [a + δ, b − δ], with t1 �= t2, we have:
∣
∣
∣
∣

f(t1) − f(t2)
t1 − t2

∣
∣
∣
∣
≤ supx∈[a,b] f(x) − infx∈[a,b] f(x)

δ
.

3. Global limits

We denote by Γ = (R+)[a,b], the set of all positive real-valued functions, defined
on [a, b], where a, b ∈ R, a < b. We use Γ as a down-directed index set and call the
elements of Γ “mesh functions”.

From now on, we suppose that R is an algebra, and E denotes a nonempty
subset of [a, b].

We consider a R-valued map φ = φ(x, h), where x ∈ [a, b] and |h| is small
enough but different from zero. Note that, when we require a condition of the
type “|h| ≤ γ(x)”, with γ ∈ Γ, we will always suppose that x + h ∈ [a, b] and/or
x − h ∈ [a, b], without writing it explicitly.

We now introduce the notion of “global” limit (briefly, (g)-limit), which for-
mally lies between pointwise and uniform limits, and in the case R = R coincides
with the pointwise limit.

Definition 3.1. We say that a global limit (g) limh→0 φ(x, h) exists in E and is equal
to φ̂(x) if

inf
γ∈Γ

[

sup
{ ∣

∣
∣φ(x, h) − φ̂(x)

∣
∣
∣ : x ∈ E, 0 < |h| ≤ γ(x)

}]

= 0 .

Definition 3.2. We say that (g) lim suph→0 φ(x, h) =φ(x) ((g) lim infh→0 φ(x, h) =
φ(x)) is a global limsup (global liminf) in E if there exists an (o)-net (pγ)γ∈Γ such
that for all γ ∈ Γ and x ∈ E we have:

0 ≤ sup
{

φ(x, h) : 0 < |h| ≤ γ(x)
} − φ(x) ≤ pγ (1)

(

0 ≤ φ(x) − inf
{

φ(x, h) : 0 < |h| ≤ γ(x)
} ≤ pγ

)

.
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Remark 3.3. Note that the (g)-limit of φ(x, h) in E exists if and only if φ(x) = φ(x)
for every x ∈ E (see [7]). Furthermore it is readily seen that, if global limits
φ(x) = (g) lim suph→0 φ(x, h) and φ(x) = (g) lim infh→0 φ(x, h) exist, then they
coincide with the corresponding pointwise limits, that is, for all x ∈ E

φ(x) = inf
γ∈Γ

[

sup
0<|h|≤γ(x)

φ(x, h)

]

,

φ(x) = sup
γ∈Γ

[

inf
0<|h|≤γ(x)

φ(x, h)
]

.

(2)

Indeed, (2) follows from (1) if we take the infimum and the supremum, respectively,
as γ varies in Γ.

The following proposition will be useful in the sequel, in particular when we
deal with major and minor functions. For the sake of simplicity, we formulate and
prove it for the global lim inf. The corresponding statement concerning the global
lim sup is analogous.

Proposition 3.4. Let f = f(x) and φ = φ(x, h) be two R-valued maps. We have

(g) lim inf
h→0

φ(x, h) ≥ f(x) in E

if and only if there exists an (o)-net (pγ)γ∈Γ such that, for all γ ∈ Γ, for each
x ∈ E and whenever 0 < |h| ≤ γ(x), the inequality

φ(x, h) ≥ f(x) − pγ (3)

holds.

Proof. By (3), there exists an (o)-net (pγ)γ∈Γ such that, for any γ ∈ Γ and for
every x ∈ E, we have

inf
0<|h|≤γ(x)

φ(x, h) ≥ f(x) − pγ .

Taking the (o)-limit as γ varies in Γ, we obtain

sup
γ∈Γ

[

inf
0<|h|≤γ(x)

φ(x, h)
]

= (o) lim
γ∈Γ

[

inf
0<|h|≤γ(x)

φ(x, h)
] ≥ f(x)

for all x ∈ E. In view of Remark 3.3 this proves the sufficiency part.
Conversely, if φ(x) = (g) lim infh→0 φ(x, h) ≥ f(x) for any x ∈ E, then there

exists an (o)-net (pγ)γ∈Γ such that, for each γ ∈ Γ, for every x ∈ E,

f(x) − inf
0≤|h|≤γ(x)

φ(x, h) ≤ φ(x) − inf
0≤|h|≤γ(x)

φ(x, h) ≤ pγ ,

and hence inf0≤|h|≤γ(x) φ(x, h) ≥ f(x) − pγ . This completes the proof. �

Let Ω be a compact extremally disconnected topological space, such that,
thanks to the Maeda–Ogasawara–Vulikh Theorem (see [2, 7]), R is algebraically
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and lattice isomorphically embedded as an order ideal in the space

C∞(Ω) =
{

ϕ : Ω → R̃ : ϕ is continuous, and
{

ω : |ϕ(ω)| = +∞}

is nowhere dense in Ω
}

.

Remark 3.5. In what follows we shall often identify an element of R with the
corresponding one of C∞(Ω) obtained by the above embedding, using the same
notation for both of them.

We can define a R̃-valued map φω by setting φω(x, h) := φ(x, h)(ω) for x ∈
[a, b] and h ∈ R. With this notation, as in [7], we have the following

Proposition 3.6. If a R-valued function φ(x, h) has (g)-limit in E, then the set
Ω \ W0 is meager in Ω, where W0 := {ω ∈ Ω : limh→0 φω(x, h) exists in R for
every x ∈ E}. If φ is bounded, then the converse holds too. In this case, for every
ω ∈ W0, we have

[

(g) lim
h→0

φ(x, h)
]

(ω) = lim
h→0

φω(x, h) .

4. Differential calculus

We now introduce the concepts of “global” continuity and differentiability, using
the idea of the global limit.

Definition 4.1. We say that f : [a, b] → R is (g)-continuous in E if there exists an
(o)-net (pγ)γ∈Γ such that, for all γ ∈ Γ,

|f(x + h) − f(x)| ≤ pγ whenever x ∈ E , |h| ≤ γ(x) .

For (g)-continuous functions the following result holds [3].

Proposition 4.2. Let f : [a, b] → R be a (g)-continuous function in [a, b]. Then f
is bounded on [a, b].

Definition 4.3. A function f : [a, b] → R is (g)-differentiable in E if there exists a
function f ′ : E → R such that

inf
γ∈Γ

[

sup
{ ∣

∣
∣
∣

f(x + h) − f(x)
h

− f ′(x)
∣
∣
∣
∣
: x ∈ E, 0 < |h| ≤ γ(x)

}]

= 0 .

It is easy to see that such a function f ′ is unique. The function f ′ will be
called the (g)-derivative of f , or simply derivative, when no confusion can arise.

We observe that, if f is (g)-differentiable with a bounded derivative, then it
is (g)-continuous too.

Definition 4.4. A function f : [a, b] → R is said to be Lipschitz in [a, b] if there
exists L ∈ R+ such that |f(t1) − f(t2)| ≤ L|t1 − t2| for all t1, t2 ∈ [a, b].

For each R-valued function it is possible to characterize properties of func-
tions f by means of fω (see Remark 3.5), for example:
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Proposition 4.5 ([7]). Let f : [a, b] → R be a function, the following statements
hold:

• if f is (g)-continuous, then the set {ω ∈ Ω : fω is not continuous in [a, b]} is
meager in Ω, and, if f is bounded, then the converse holds true;

• if f is (g)-differentiable, then f ′(x)(ω) = fω
′(x) for all ω ∈ Ω \ N∗ and

x ∈ [a, b], where N∗ := {ω ∈ Ω : fω is not differentiable in [a, b]} is a meager
set independent on x; if f is Lipschitz, then the converse holds true.

Proposition 4.6. Let f : [a, b] → R be a (g)-differentiable function, with derivative
bounded in [a, b]. Then f is Lipschitz in [a, b].

Proof. By hypothesis, there exists L ∈ R such that |f ′(x)| ≤ L whenever x ∈ [a, b].
Thanks to Proposition 4.5, this implies |f ′

ω(x)| ≤ L(ω) ∈ R in the complement
of meager subsets of Ω. Thus, by virtue of the mean value theorem, for such ω’s
the functions fω are Lipschitz with Lipschitz constant L(ω). This means that for
every x1, x2 ∈ [a, b] and in the complement of meager subsets of Ω we get:

|fω(x2) − fω(x1)| ≤ L(ω)|x2 − x1| ,
and also

|f(x2) − f(x1)|(ω) ≤ L(ω)|x2 − x1| .
So the assertion follows. �
Definition 4.7. A function f : [a, b] → R is said to be of bounded variation in [a, b]
if there exists in R the quantity

sup

{
n∑

i=1

|f(xi) − f(xi−1)| : x0 = a < x1 < · · · < xn = b

}

.

5. The Riemann and Riemann–Stieltjes integrals

We now recall the definitions of the Riemann integral and the Mengoli–Cauchy
integral for Riesz-space-valued functions (see for example [3, 5]).

Definitions 5.1. A division of [a, b] is any finite set τ = {x0, x1, . . . , xn} ⊂ [a, b],
where x0 = a, xn = b and xi−1 < xi for all i = 1, . . . , n.

A partition of [a, b] is a set of the type

E =
{

(Ai, ξi) : i = 1, . . . , n
}

,

where Ai = [xi−1, xi], {x0, x1, · · · , xn} is a division of [a, b] and ξi ∈ Ai for all
i = 1, . . . , n. The quantity |E| ≡ maxi (xi − xi−1) is called the mesh of a partition
E of [a, b] .

Given γ ∈ Γ, we say that a partition E of [a, b] is γ-fine if xi − xi−1 ≤ γ(ξi)
for all i = 1, . . . , n.

Definition 5.2. Given a function f : [a, b] → R and a partition E of [a, b], we denote
by S(f, E) the sum

∑n
i=1 f(ξi) (xi − xi−1) and we call it the Riemann sum of f

with respect to E .
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Definition 5.3. A function f : [a, b] → R is Mengoli–Cauchy integrable in [a, b] if
there exists an element Y ∈ R such that

inf
n

[

sup
{ |S(f, E) − Y | : |E| ≤ 1/n

}]

= 0 , (4)

where the symbol |E| denotes the “mesh” of E .

Definition 5.4. Let R be a Dedekind complete Riesz space, and f : [a, b] → R
a bounded function. We call upper integral [resp. lower integral ] of f the element
of R given by

inf
v∈Vf

∫ b

a

v(t) dt

[

sup
s∈Sf

∫ b

a

s(t) dt

]

,

where

Vf ≡ {

v : v is a step function , v(t) ≥ f(t) for all t ∈ [a, b]
}

,

Sf ≡ {

s : s is a step function , s(t) ≤ f(t) for all t ∈ [a, b]
}

,

and the integrals of the involved step functions are understood as in the classical
setting. We say that a bounded function f : [a, b] → R is Riemann integrable (or
(Ri)-integrable) in [a, b], if its lower integral coincides with its upper integral, and,
in this case, we call (Ri)-integral of f (and write (Ri)

∫ b

a
f(t) dt) the common value

of them.

Theorem 5.5. [5, Theorems 3.5, 3.6] A function f : [a, b] → R is Mengoli–Cauchy
integrable if and only if it is Riemann integrable, and in this case the two involved
integrals coincide.

Remark 5.6 (see for example [3,5]). A bounded function f : [a, b] → R is Riemann
integrable if and only if the set {ω ∈ Ω : fω is not Riemann integrable } is meager
in Ω, and in this case we have, in the complement of meager sets,

(Ri)
∫ b

a

fω(x) dx =

(

(Ri)
∫ b

a

f(x) dx

)

(ω) .

Moreover, if f : [a, b] → R is (g)-continuous, then it is Riemann integrable.

As in the scalar case, the Torricelli–Barrow theorem and the Fundamental
Theorem of Calculus hold:

Theorem 5.7. Let f be a (g)-continuous function in E. Then its Riemann integral
function F , defined by F (x) = (Ri)

∫ x

a f , is (g)-differentiable in E and

F ′(x) = f(x) , x ∈ E .

Theorem 5.8. Let f : [a, b] → R be a (g)-differentiable function, and suppose that
its (g)-derivative f ′ is Riemann integrable. Then

(Ri)
∫ b

a

f ′(t) dt = f(b) − f(a) .
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We now turn to the Riemann–Stieltjes integral (for definitions and properties
see for example [13]).

Definition 5.9. Given a partition E = {([xi−1, xi], ξi), i = 1, . . . , n} and f, g :
[a, b] → R, we denote by Sg(f, E) the Riemann sum of f with respect to g, namely

n∑

i=1

f(ξi)
[

g(xi) − g(xi−1)
]

.

Definition 5.10. A function f : [a, b] → R is Riemann–Stieltjes integrable with
respect to g : [a, b] → R if there exists an element Y ∈ R such that

inf
n

[

sup
{ |Sg(f, E) − Y | : |E| ≤ 1/n

}]

= 0 ,

and in this case we write (RS)
∫ b

a f dg = Y.

The following result will be useful in the sequel (see also [15]).

Proposition 5.11. Let f, g : [a, b] → R. Suppose that f is (g)-continuous and g is
of bounded variation. Then the integral (RS)

∫ b

a f dg exists in R.

6. Major and minor functions

In what follows we use the usual notation for the second symmetric difference:

Δ2f(x, h) = f(x + h) − 2f(x) + f(x − h) .

Definition 6.1. Given f : [a, b] → R and ∅ �= E ⊂ [a, b], we set for x ∈ E

D
1
f(x) = (g) lim sup

h→0

f(x + h) − f(x)
h

,

D1f(x) = (g) lim inf
h→0

f(x + h) − f(x)
h

,

D
2
f(x) = (g) lim sup

h→0

Δ2f(x, h)
h2

,

D2f(x) = (g) lim inf
h→0

Δ2f(x, h)
h2

.

These quantities are called upper and lower Dini derivatives in E, of order 1 and 2,
respectively.

It is clear that if D
1
f(x) = D1f(x) then f is (g)-differentiable and the

common value coincides with g-derivative of f . If D
2
f(x) = D2f(x) then we call

this common value Riemann (g)-derivative of order 2 and denote it as D2f(x).

Definition 6.2. Given f : [a, b] → R, we say that G : [a, b] → R is a major function
of order 1 (resp. 2) for f if it is (g)-continuous in [a, b] (resp. (g)-differentiable in
[a, b] with a bounded derivative) and
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6.2.1). G(a) = 0 (resp. G(a) = G′(a) = 0);
6.2.2). there exists a countable set Q ⊂]a, b[ such that D1G(x) ≥ f(x) (D2G(x)
≥ f(x) ) for each x ∈]a, b[\Q.

Let k = 1, 2. A function K is a minor function of order k for f if −K is a major
function of order k for −f .

We denote by Gk and Kk the set of all major and minor functions of order k
for f , respectively.

Similar to [4], we get the following results:

Proposition 6.3. If f : [a, b] → R has both a major function Ψ and a minor function
Φ of order 1 (resp. 2), then Ψ − Φ is positive, increasing (and convex) in [a, b].

Proof. Let Ψ and Φ be any major and minor function of order k for f . Define
T (x) = Ψ(x) − Φ(x) for x ∈ [a, b]. Since Ψ and Φ are (g)-continuous in [a, b],
then T is bounded. Thus there exist a nowhere dense set N∗ ⊂ Ω and an element
L ∈ R such that |T (x)(ω)| ≤ L(ω) ∈ R for all x ∈ [a, b] and ω ∈ Ω \ N∗. For each
ω ∈ Ω \ N∗ and x ∈ [a, b], set Tω(x) := T (x)(ω).

We first consider the case k = 2. For every ω ∈ Ω \ N and x ∈ E =]a, b[\Q,
where N ⊃ N∗ and Q ⊂]a, b[ are two suitable sets, meager and countable respec-
tively, we have D2T (x)(ω) ≥ 0. Hence

sup
γ∈Γ

(

inf
x∈E,0<|h|≤γ(x)

[
Δ2T (x, h)(ω)

h2

])

≥ 0 ,

that is for all ω ∈ Ω \ N and for every ε > 0 there exists γ ∈ Γ such that for each
x ∈ E and whenever 0 < |h| ≤ γ(x) we get

Δ2Tω(x, h)
h2

> −ε .

Thus there exists δ(ω, ε, x) > 0 such that whenever 0 < |h| ≤ δ we have

Δ2Tω(x, h)
h2

> −ε ,

and then for the usual lower Riemann second symmetric derivative of the real
function Tω we get the inequality D2Tω(x) ≥ 0, for every x ∈ E and ω ∈ Ω \ N .
This (see for instance [9]) implies that, for every ω ∈ Ω \ N , the function Tω

is convex. Fix now x1, x2 with a ≤ x1 < x2 ≤ b and t ∈ [0, 1]. Then in the
complement of a meager set (independent on the above chosen elements):

Tω

(

tx1 + (1 − t)x2

) ≤ tTω(x1) + (1 − t)Tω(x2)

and hence T (tx1 +(1− t)x2) ≤ tT (x1)+(1− t)T (x2). This proves that T is convex.
So (see Remark 2.3) we get:

0 = T ′(a) ≤ T (x) − T (a)
x − a

=
T (x)
x − a

for every x ∈]a, b] ;

0 = T ′(a) ≤ T (x) − T (y)
x − y

whenever x, y ∈ [a, b], x �= y ;
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and thus T (x) ≥ 0 for every x ∈ [a, b] and T is increasing in [a, b]. This concludes
the proof in the case k = 2.

In the case k = 1, proceeding analogously as above, we get the existence of a
meager set N ′ ⊂ Ω and a set E ⊂]a, b[ such that ]a, b[\E is countable, and

lim inf
h→0

Tω(x + h) − Tω(x)
h

≥ 0 for every ω ∈ Ω \ N′ and x ∈ E .

This implies that Tω is increasing on [a, b] for such ω’s. Thus T is increasing on
[a, b] and, since T (a) = 0, we get that T (x) ≥ 0 for all x ∈ [a, b]. This completes
the proof. �

Proposition 6.4. Under the same hypotheses as in Proposition 6.3, if ∅ �= Gk,
∅ �= Kk and supΨ∈Gk

Ψ(b) = infΦ∈Kk
Φ(b), then, for all x ∈ [a, b], we have:

inf
Ψ∈Gk

Ψ(x) = sup
Φ∈Kk

Φ(x) .

Proof. The assertion follows from the fact that Ψ − Φ is increasing, thanks to
Proposition 6.3. �

7. The Perron integral

Definition 7.1. Let k = 1, 2. A function f : [a, b] → R is said to be Perron integrable
of order k (shortly Pk-integrable) in [a, b] if f has both major and minor functions
of order k and

inf
Ψ∈Gk

[

Ψ(b)
]

= sup
Φ∈Kk

[

Φ(b)
] ∈ R .

In this case we denote the common value by (Pk)
∫ b

a f or (Pk)
∫ b

a f(t) dt. By Propo-
sition 6.4 the function Ik(x) = infΨ∈Gk

[Ψ(x)] = supΦ∈Kk
[Φ(x)] is well-defined for

each x ∈ [a, b].
We now turn to some fundamental properties of Pk-integral.

Proposition 7.2. If f, f1, f2 : [a, b] → R are Pk-integrable for k = 1, 2 and c1,
c2 ∈ R, then c1 f1 + c2 f2 is Pk-integrable too, and we have:

i) (Pk)
∫ b

a (c1 f1 + c2 f2) = c1(Pk)
∫ b

a f1 + c2(Pk)
∫ b

a f2 (linearity).
ii) (Pk)

∫ b

a
f1 ≤ (Pk)

∫ b

a
f2 if f1 ≤ f2 (monotonicity).

iii) Moreover f is Pk-integrable in every subinterval [a′, b′] ⊂ [a, b]. If a < c < b,
then

(Pk)
∫ b

a

f = (Pk)
∫ c

a

f + (Pk)
∫ b

c

f . (5)

iv) Conversely, if a < c < b and f is Pk-integrable both in [a, c] and in [c, b],
then it is Pk-integrable in [a, b] too, and the formula (5) holds.

Proof. The proof is similar to the one in the real-valued case (see [10]). �
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Proposition 7.3. Let k = 1, 2. If f is Pk-integrable in [a, b] then, for every
x ∈ [a, b],

(Pk)
∫ x

a

f(t) dt = Ik(x) ,

where Ik is as in Definition 7.1.

Proof. It follows from the integrability in subintervals that inf
Ψ∈G[a,x]

k

Ψ(x) =

sup
Φ∈K[a,x]

k

Φ(x) ∈ R for all x ∈ [a, b], where the symbols G[a,x]
k and K[a,x]

k denote
the classes of all major and minor functions of order k for f in the interval [a, x].
But, if Ψ ∈ Gk and Φ ∈ Kk (relative to the interval [a, b]), then their restrictions
Ψ|[a,x] ∈ G[a,x]

k , Φ|[a,x] ∈ K[a,x]
k , and hence we have:

inf
Ψ∈G[a,x]

k

Ψ(x) ≤ inf
Ψ∈Gk

Ψ|[a,x](x) = sup
Φ∈Kk

Φ|[a,x](x) ≤ sup
Φ∈K[a,x]

k

Φ(x) = inf
Ψ∈G[a,x]

k

Ψ(x) .

This implies the assertion. �

We call Ik the Pk-integral function associated to f , with the value Ik(b) being
the Pk-integral of f in [a, b].

Remark 7.4. Note that

inf
Ψ∈Gk

(

sup
x∈[a,b]

(

Ψ(x) − Ik(x)
)

)

= inf
Φ∈Kk

(

sup
x∈[a,b]

(

Ik(x) − Φ(x)
)

)

= 0 .

Proposition 7.5. If K ∈ K1, G ∈ G1 (resp. Φ ∈ K2, Ψ ∈ G2), then I1−K and G−I1

(resp. I2 − Φ and Ψ − I2) are R+
0 -valued increasing (and resp. convex) functions.

Proof. We prove only convexity of I2−Φ, since the proof of the other properties is
analogous. As R is super Dedekind complete, there exists a sequence (Ψn)n in G2

such that infn Ψn(b) = I2(b). Fix now x ∈ [a, b]. Since 0 ≤ Ψn(x)−I2(x) ≤ Ψn(b)−
I2(b), it follows that (o) limn Ψn(x) = I2(x). Choose now arbitrarily Φ ∈ K2. Then
I2 − Φ is the (o)-limit of Ψn − Φ, and thus I2 − Φ turns out to be a convex map,
being the (o)-limit of a sequence of convex functions. �

Proposition 7.6. Let k = 1, 2. If f is Pk-integrable, then Ik is (g)-continuous.

Proof. First of all, we observe that, thanks to Propositions 3.6, 4.5 and 4.6, if G
(resp. K) is a major (minor) function of order k (k = 1, 2) for f , then in the
complement of meager subsets of Ω we get that Gω (Kω) is a major (minor)
function of order k for fω. We note that, by construction, for k = 1, 2 G and K are
bounded, and for k = 2 G and K are Lipschitz by Proposition 4.6. From this, by
virtue of the Maeda–Ogasawara–Vulikh theorem it follows that, if f : [a, b] → R
is Pk-integrable (k = 1, 2), then the fω’s are real-valued and Pk-integrable in the
complement of a meager subset N∗ ⊂ Ω, and, if Ik and Iω,k are the Pk-integral
functions associated with f and fω respectively, then we have Iω,k(x) = Ik(x)(ω)
for all x ∈ [a, b] and in the complement of a meager subset N ′ ⊂ Ω. Without loss
of generality, we can suppose that N ′ ⊃ N∗.
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Let now ω ∈ Ω \ N ′ and k = 1, 2. Then Iω,k is continuous as Pk-integral
function of the real-valued function fω. Since by construction Ik is bounded, then
by Proposition 4.5 we get (g)-continuity of Ik. This completes the proof. �

Proposition 7.7. Every (Ri)-integrable function f : [a, b] → R is P1-integrable,
and

(Ri)
∫ x

a

f(t) dt = I1(x) for all x ∈ [a, b] .

Proof. Let v ∈ Vf , s ∈ Sf (see Definition 5.4), and put Tv(x) :=
∫ x

a v(t) dt,
Ts(x) :=

∫ x

a
s(t) dt. Then, by Proposition 7.6, Tv and Ts are (g)-continuous, and

moreover, by proceeding with similar arguments as in the Torricelli–Barrow theo-
rem, we get that D1Tv(x) ≥ f(x) ≥ D

1
Ts(x) in the complement of a finite set of

x’s belonging to [a, b], depending on the involved step functions v and s. So, thanks
to super Dedekind completeness of R and Riemann integrability of f , there exist
two sequences (vn)n and (sn)n in Vf and Sf , respectively, which can be supposed,
without loss of generality, to be equibounded, and such that

0 = inf
s∈Sf

∫ b

a

v(t) dt − sup
s∈Sf

∫ b

a

s(t) dt = inf
n

∫ b

a

vn(t) dt − sup
n

∫ b

a

sn(t) dt . (6)

The functions Tvn and Tsn , n ∈ N, turn out to be a major and a minor function
for f , respectively. Thus, taking into account (6) and using Riemann integrability
of f , we get:

0 ≤ inf
G∈G1

G(b) − sup
K∈K1

K(b) ≤ inf
n

∫ b

a

vn(t) dt − sup
n

∫ b

a

sn(t) dt (7)

and so, from (7) we have

inf
G∈G1

G(b) − sup
K∈K1

K(b) = 0 ,

getting P1-integrability of f in [a, b]. Moreover, from Proposition 7.2 iii) we get
P1-integrability of f in every interval [a, x], with a < x ≤ b. The conclusion follows
by Proposition 7.3. �

We now compare the Perron integral of order 1 with the one of order 2.

Theorem 7.8. If f : [a, b] → R is P1-integrable, then f is P2-integrable too. More-
over we have:

I2(b) =
(P2

)
∫ b

a

f = (P1)
∫ b

a

[

(P1)
∫ x

a

f(t) dt

]

dx .

Proof. Let G be any major function of order 1 for f in [a, b]. We prove that its
P1-integral function Ψ is a major function of order 2 for f . We note first that,
by definition, Ψ(a) = 0. Moreover, since G, by hypothesis, is (g)-continuous, then,
by Torricelli–Barrow theorem, Ψ is (g)-differentiable and Ψ′(x) = G(x) for every
x ∈ [a, b], and hence Ψ′(a) = 0, since, by hypothesis, G(a) = 0.
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Proceeding similarly as in [4], we now prove the second property of major
functions of the order 2. First of all, we observe that by the same property related
to the major function of the order 1, Proposition 3.4 implies the existence of an
(o)-net (pγ)γ∈Γ and a set E ⊂]a, b[ such that ]a, b[\E is countable and, for every
γ ∈ Γ and x ∈ E with 0 < |h| ≤ γ(x), we have

G(x + h) − G(x)
h

≥ f(x) − pγ .

In particular, when t > 0, we get

G(x + t) − G(x) ≥ t f(x) − t pγ ; G(x − t) − G(x) ≤ −t f(x) + t pγ .

Taking the Riemann integral, we get, whenever x ∈ E and 0 < h ≤ γ(x):

(Ri)
∫ h

0

[

G(x + t) − G(x)
]

dt = Ψ(x + h) − Ψ(x) − h G(x)

≥ h2

2
f(x) − h2

2
pγ ,

−(Ri)
∫ h

0

[

G(x − t) − G(x)
]

dt = Ψ(x − h) − Ψ(x) + h G(x)

≥ h2

2
f(x) − h2

2
pγ ,

and so
Δ2Ψ(x, h)

h2
≥ f(x) − pγ .

It is easy to see that the last inequalities hold also with h < 0. By Proposi-
tion 3.4, we get that D2Ψ(x) ≥ f(x) for all x ∈ E. In the same way we prove
that, if K is a minor function of order 1 for f , then its P1-integral function Φ is
a minor function of order 2 for f . This implies obviously that f is P2-integrable
and (P2)

∫ b

a
f = (P1)

∫ b

a
I1. �

For the converse we prove

Theorem 7.9. If f : [a, b] → R is P2-integrable, then I ′2 is P1-integrable. Moreover,
if Ψ (resp. Φ) is a major (minor) function of order 2 for f , then

Ψ′(x) − I ′2(x) ≥ 0
(

I ′2(x) − Φ′(x) ≥ 0
)

for all x ∈ [a, b].

Proof. In order to prove the first part of the theorem, it is enough to check that I2

is both a major and a minor function of order 1 of I ′2. First of all, we note that
I2(a) = 0. Moreover, observe that I2 is Lipschitz in [a, b]: indeed, every Ψ ∈ G2 and
Φ ∈ K2 has by hypothesis bounded (g)-derivatives in [a, b], and hence is Lipschitz
in [a, b], thanks to Proposition 4.6. So, since Ψ − I2 and I2 − Φ are increasing in
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[a, b], there exist two elements LΨ, lΦ ∈ R such that, for all t1, t2 ∈ [a, b] with
t1 �= t2, we get:

LΨ ≥ Ψ(t2) − Ψ(t1)
t2 − t1

≥ I2(t2) − I2(t1)
t2 − t1

≥ Φ(t2) − Φ(t1)
t2 − t1

≥ lΦ ;

Lipschitzianity of I2 follows from these inequalities.
Let now Iω,2 be the integral function associated with fω: we prove that Iω,2

is differentiable in [a, b] for every ω ∈ Ω \N , where N is a suitable meager set. For
ω �∈ N , let Gω,2 and Kω,2 be the classes of all major and minor functions of order 2
for fω respectively. Fix now arbitrarily ω ∈ Ω \ N , ε > 0 and 0 < δ < b−a

2 : then
there exists Φ(ω) ∈ Kω,2 such that, for every x, x0 ∈ [a, b], 0 ≤ |(Iω,2 − Φ(ω))(x) −
(Iω,2 − Φ(ω))(x0)| ≤ ε, and hence, whenever x and x0 are taken in [a + δ, b − δ]
with x �= x0, by Proposition 2.4 we have:

0 ≤ (Iω,2 − Φ(ω))(x) − (Iω,2 − Φ(ω))(x0)
x − x0

≤ ε

δ
.

We get:

lim inf
x→x0

Iω,2(x) − Iω,2(x0)
x − x0

≤ lim sup
x→x0

Iω,2(x) − Iω,2(x0)
x − x0

≤ lim sup
x→x0

(Iω,2 − Φ(ω))(x) − (Iω,2 − Φ(ω))(x0)
x − x0

+ (Φ(ω))′(x0)

=
ε

δ
+ lim

x→x0

Φ(ω)(x) − Φ(ω)(x0)
x − x0

≤ ε

δ
+ lim inf

x→x0

Iω,2(x) − Iω,2(x0)
x − x0

,

because, by Proposition 7.5, Iω,2 − Φ(ω) is increasing in [a, b]. From this, by arbi-
trariness of ε, it follows that Iω,2 is differentiable at x0. Hence, by the arbitrari-
ness of δ, we get the differentiability of Iω,2 in ]a, b[. Let now Ψ(ω) ∈ Gω,2 and
Φ(ω) ∈ Kω,2. Since Ψ(ω) − Iω,2 and Iω,2 − Φ(ω) are increasing in [a, b], we get, for
all x, x0 ∈ [a, b] with x �= x0:

Ψ(ω)(x) − Ψ(ω)(x0)
x − x0

≥ Iω,2(x) − Iω,2(x0)
x − x0

≥ Φ(ω)(x) − Φ(ω)(x0)
x − x0

. (8)

As Ψ(ω)(a) = Φ(ω)(a) = 0, it follows from (8), with x0 = a, that Iω,2
′(a) = 0.

Furthermore, we observe that, since every function Φ(ω) ∈ Kω,2 is differentiable
at b and is such that Iω,2 −Φ(ω) is convex in [a, b] (see also Proposition 7.5), then
the limit

lim
x→b−

Iω,2(x) − Iω,2(b)
x − b

exists in R. Differentiability of Iω,2 at the point b follows from this and (8) used
with x0 = b. Thus, by Proposition 4.5, it follows that I2 is (g)-differentiable in
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[a, b] and I2
′(a) = 0. Hence, I2 is both a major and a minor function of order 1

of I2
′.
Now, to prove the last part of the theorem, let Ψ be an arbitrary major

function of order 2 for f . We observe that, taking into account the convexity of
Ψ−I2 and the equality Ψ(a) = Ψ′(a) = I2(a) = I2

′(a) = 0, we get Ψ′(x)−I2
′(x) ≥

0 for all x ∈ [a, b]. An analogous result holds for minor functions of order 2 for f .
This completes the proof. �
Remark 7.10. It is not difficult to construct an example showing that our
P2-integral is essentially more general than P1-integral. It is enough, in the case
R = R, to consider Ψ(x) = x2 sin 1

x . Then f(x) = D2Ψ(x) exists everywhere on
[−1, 1] and is P2-integrable with Ψ(x) − Ψ(−1) being its P2-integral function on
[−1, 1], but f is not P1-integrable on the same interval because it has no con-
tinuous P1-integral function (note that Ψ′(x) is bounded on [−1, 1] but it is not
continuous at x = 0).

8. Integration by parts

Here we consider separately the cases k = 1 and k = 2 using the Riemann–Stieltjes
integral in the formula for the case k = 1. Then this formula will be used to obtain
the second order result.

8.1. The integration by parts formula for the P1-integral

We now prove the main theorem in the case k = 1.

Theorem 8.1. Let f, g : [a, b] → R, suppose that g is Lipschitz and f is P1-integrable
in [a, b]. Then f · g is P1-integrable in [a, b] too, and we have

(P1)
∫ b

a

f · g = I1(b)g(b) − (RS)
∫ b

a

I1 dg ,

where I1 is the P1-integral function associated to f .

Proof. Since g is Lipschitz, then g is of bounded variation, and hence g is the
difference of two monotone increasing functions. So, without loss of generality, we
can suppose that g(a) = 0 and g(t1) ≤ g(t2) whenever a ≤ t1 < t2 ≤ b. In some
cases below we shall apply Proposition 3.4 without mentioning it explicitly.

Let G and K be any major and minor function of order 1 for f . We set for
x ∈ [a, b]

M(x) = G(x)g(x) − (RS)
∫ x

a

Gdg , m(x) = K(x)g(x) − (RS)
∫ x

a

K dg . (9)

For every x ∈]a, b[ and h �= 0, we get:
G(x + h)g(x + h) − G(x)g(x)

h
= G(x + h)

g(x + h) − g(x)
h

+
G(x + h) − G(x)

h
g(x) ,
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and so
M(x + h) − M(x)

h
=

G(x + h) − G(x)
h

g(x)

+
1
h

(RS)
∫ x+h

x

[

G(x + h) − G(t)
]

dg(t) .

Moreover, by (g)-continuity of G, there exists an (o)-net (pγ)γ∈Γ such that |G(x+
h) − G(t)| ≤ pγ for every γ ∈ Γ and whenever x ∈]a, b[, 0 < h ≤ γ(x) and
t ∈ [x, x + h]. Then

∣
∣
∣
∣
∣

1
h

(RS)
∫ x+h

x

[

G(x + h) − G(t)
]

dg(t)

∣
∣
∣
∣
∣
≤ 1

h
(RS)

∫ x+h

x

|G(x + h) − G(t)| dg(t)

≤ 1
h

pγ(RS)
∫ x+h

x

dg(t)

≤ pγ

∣
∣
∣
∣

g(x + h) − g(x)
h

∣
∣
∣
∣
≤ pγ L ,

where L ∈ R+ is a Lipschitz constant for g; we get an analogous result for −γ(x) ≤
h < 0. Thus, since G is a major function of order 1 for f , we have the existence of
a set E ⊂]a, b[ such that ]a, b[\E is countable and, for every γ ∈ Γ and x ∈ E,

inf
{

M(x + h) − M(x)
h

: x ∈ E, 0 < |h| ≤ γ(x)
}

≥
[

inf
{

G(x + h) − G(x)
h

: x ∈ E, 0 < |h| ≤ γ(x)
}]

· g(x) − pγL

≥ f(x)g(x) − pγL .

From this it follows that

D1M(x) ≥ f(x) g(x) for all x ∈ E .

Moreover, we observe that M is (g)-continuous, because so are G and g, and
the integral function Gg(x) := (RS)

∫ x

a
Gdg is Lipschitz (this is a consequence

of boundedness of G and Lipschitzianity of g). Furthermore, M(a) = 0, since
G(a) = 0. Thus, M is a major function of order 1 for f · g. Similarly, it is possible
to check that the function m defined in (9) is a minor function of order 1 for f · g.
Finally, since G − I1 is increasing, for every x ∈ [a, b] we get:

0 ≤ (RS)
∫ x

a

{

G(x) − I1(x) − [

G(t) − I1(t)
]}

dg(t)

=
[

G(x) − I1(x)
]

g(x) − (RS)
∫ x

a

[

G(t) − I1(t)
]

dg(t)

= G(x)g(x) − (RS)
∫ x

a

Gdg − I1(x)g(x) + (RS)
∫ x

a

I1 dg (10)

= M(x) − I1(x)g(x) + (RS)
∫ x

a

I1 dg .
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We now denote by M and Ξ the classes of all major and minor functions of order 1
for f · g and by M1 the class of that major functions of order 1 for f · g in [a, b]
which satisfies (9). By properties of the major functions G of order 1 for f and (10),
we have, for all x ∈ [a, b]:

0 ≤ inf
M∈M

(

sup
x∈[a,b]

(

M(x) − I1(x)g(x) + (RS)
∫ x

a

I1dg

))

≤ inf
M∈M1

(

sup
x∈[a,b]

(

M(x) − I1(x)g(x) + (RS)
∫ x

a

I1dg

))

= inf
G∈G1

(

sup
x∈[a,b]

(

(RS)
∫ x

a

{

G(x) − I1(x) − [

G(t) − I1(t)
]}

dg(t)
))

= 0 ,

since infG∈G1 (supx∈[a,b] [G(x)− I1(x)]) = 0, where G1 is, as before, the class of all
major functions of order 1 for f .

Analogously we get, for each x ∈ [a, b]:

inf
m∈Ξ

(

sup
x∈[a,b]

(

I1(x)g(x) − (RS)
∫ x

a

I1 dg − m(x)
))

= 0 .

Thus, we have proved that f · g is P1-integrable and

(P1)
∫ x

a

f · g = I1(x) g(x) − (RS)
∫ x

a

I1 dg , x ∈ [a, b] . �

Remark 8.2. In the classical integration by part formula for the Perron integral
in the real-valued case the multiplier is a function of bounded variation. Whether
the Lipschitz function g can be replaced with a function of bounded variation in
the above theorem, is an open problem for the moment.

8.2. The formula of integration by parts for the P2-integral

We begin with some lemmas. As in the scalar case (see for example [20, 21]), the
following lemma holds.

Lemma 8.3. Let f, g : [a, b] → R, x ∈ [a, b], h ∈ R \ {0}. Then we get:

Δ2(f · g)(x, h)
h2

= f(x + h)
Δ2g(x, h)

h2

+ 2
f(x + h) − f(x)

h

g(x) − g(x − h)
h

+
Δ2f(x, h)

h2
g(x − h) .

The proof follows by simple computation.

Lemma 8.4. Let p, u, v, w, y, z ∈ R be such that p, w ≥ 0; u ≥ v − p, z ≥ 0,
0 ≥ z − y ≥ −w. Then

u z ≥ v y − v+ w − p y . (11)
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Proof. Since z ≥ 0 and u ≥ v − p, then we get

u z ≥ v z − p z = v+ z − v− z − p z .

Moreover, as z ≥ y − w, we have v+ z ≥ v+ y − v+ w. Furthermore, since z ≤ y,
we get −v− z ≥ −v− y, −p z ≥ −p y, and hence

u z ≥ v+ y − v+ w − v− y − p y = v y − v+ w − p y . �

Theorem 8.5. Let f : [a, b] → R be P2-integrable in [a, b] and let g : [a, b] → R be
(g)-differentiable in [a, b], with the derivative g′ being Lipschitz in [a, b]. Then f · g
is P2-integrable in [a, b], and

(P2)
∫ b

a

f · g + (P1)
∫ b

a

[

(P1)
∫ x

a

I2
′(t)g′(t)dt

]

dx = I2(b)g(b) − (P1)
∫ b

a

I2 · g′ .

Proof. Without loss of generality, we can suppose g(x) ≥ 0 and g increasing in
[a, b], so that g′(x) ≥ 0 for every x ∈ [a, b]. Let Ψ be any major function of order 2
for f . We prove that

S(x) = Ψ(x)g(x) − (P1)
∫ x

a

Ψ · g′ , x ∈ [a, b] (12)

is a major function of order 2 for f · g + I2
′ · g′, where I2 is the integral function

of order 2 associated with f .
It is easy to check that all rules of differentiation of the product hold, as in

the classical case. From this and Theorem 5.7 we have:

S′(x) = Ψ′(x) g(x) + Ψ(x) g′(x) − Ψ(x) g′(x) = Ψ′(x) g(x) forall x ∈ [a, b] ;

S(a) = S′(a) = 0 .

Fix now x ∈ [a, b], and put Ψ(t) = Ψx(t) = Ψ(t) − P (t), where P (t) = Ψ(x) +
(t − x)Ψ′(x) and set

S(t) = Sx(t) = Ψ(t)g(t) − (P1)
∫ t

a

Ψ · g′, t ∈ [a, b] .

Note that
Δ2Ψ(x, h) = Δ2Ψ(x, h) . (13)

We also have:

(S − S)′(t) = P ′(t) g(t) + P (t) g′(t) − P (t) g′(t) = Ψ′(x) g(t) , t ∈ [a, b] .

Let h > 0. We have: Δ2S(x, h) = Δ2S(x, h) + Δ2(S − S)(x, h). It is easy to check
that

Δ2(S − S)(x, h) = Ψ′(x)

(

(P1)
∫ h

0

−(P1)
∫ 0

−h

)[

(P1)
∫ t

0

(

g′(x + u) − g′(x)
)

du

]

dt

+ Ψ′(x)g′(x)h2 .



Integration by Parts for Perron Type Integrals in Riesz Spaces 19

Let L∗ be such that |Ψ′(x)| ≤ L∗ for all x ∈ [a, b], and 0 ≤ M∗ ∈ R be a Lipschitz
constant for g′. We have: |g′(x + u) − g′(x)| ≤ u M∗, and then

Δ2(S − S)(x, h)
h2

≥ −L∗ M∗ h

3
+ Ψ′(x)g′(x) . (14)

To estimate Δ2S(x,h)
h2 we use Lemma 8.3 and (13) to obtain, for all x ∈]a, b[:

Δ2S(x, h)
h2

≥ Ψ(x + h)
Δ2g(x, h)

h2
+ 2

Ψ(x + h) − Ψ(x)
h

g(x) − g(x − h)
h

+
Δ2Ψ(x, h)

h2
g(x − h)

− 1
h2

(

(P1)
∫ x+h

x

−(P1)
∫ x

x−h

)

Ψ(τ) g′(τ) dτ . (15)

We note first that according to the (g)-differentiability of Ψ there exists an
(o)-net (zγ)γ∈Γ such that, for every γ ∈ Γ, whenever x, τ ∈ [a, b], 0 < |τ−x| ≤ γ(x),

|Ψ(τ)| = |Ψ(τ) − Ψ(x) − (τ − x)Ψ′(x)| ≤ |τ − x| zγ . (16)

Moreover, there exists a positive element K0 ∈ R such that, for every τ ∈ [a, b],
|g′(τ)| ≤ K0. Using this, we obtain:
∣
∣
∣
∣
∣
(P1)

∫ x+h

x

Ψ(τ) g′(τ) dτ

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
(P1)

∫ x+h

x

[

Ψ(τ) − Ψ(x) − (τ − x)Ψ′(x)
]

g′(τ) dτ

∣
∣
∣
∣
∣

(17)

≤
[

(P1)
∫ x+h

x

(τ − x)dτ

]

K0 zγ =
h2

2
K0 zγ

whenever x ∈]a, b[ and 0 < h ≤ γ(x). Analogously we prove that for such x’s and
h’s we have:

∣
∣
∣
∣
(P1)

∫ x

x−h

Ψ(τ) g′(τ) dτ

∣
∣
∣
∣
≤ h2

2
K0 zγ . (18)

Now, using the Maeda–Ogasawara–Vulikh Theorem, we set gω(x) = g(x)(ω)
for all x ∈ [a, b] and ω ∈ Ω (see Remark 3.5). Let L ∈ R+ be a Lipschitz constant
for g′. There exists a meager set N ⊂ Ω such that, for each ω ∈ Ω \ N , for any
x ∈]a, b[ and h > 0, we have, for a suitable point ξh,ω belonging to the interval
[x, x + h],

∣
∣
∣
∣

Δ2gω(x, h)
h2

∣
∣
∣
∣
=

∣
∣
∣
∣

g′ω(ξh,ω) − g′ω(ξh,ω − h)
h

∣
∣
∣
∣
≤ L(ω) ∈ R ,

by virtue of the mean value theorem applied to the function J (ω)(t) := gω(t) −
gω(t − h). From this it follows that

∣
∣
∣
∣

Δ2g(x, h)
h2

∣
∣
∣
∣
≤ L . (19)
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Now once again using the (g)-differentiability of Ψ we take, the (o)-net (zγ)γ∈Γ

for which (16) holds having also in mind that |Ψ′(x)| ≤ L∗ for all x ∈ [a, b], we get
for x ∈]a, b[ and 0 < h ≤ γ(x):

∣
∣Ψ(x + h)

∣
∣ = |Ψ(x + h) − Ψ(x) − hΨ′(x)| ≤ hzγ ; (20)

∣
∣
∣
∣

Ψ(x + h) − Ψ(x)
h

∣
∣
∣
∣
=

∣
∣
∣
∣

Ψ(x + h) − Ψ(x)
h

− Ψ′(x)
∣
∣
∣
∣
≤ zγ .

Moreover, since g′ is Lipschitz, then g′ is (g)-continuous and hence bounded too.
Thus, by Proposition 4.6, g is Lipschitz and (g)-continuous too. So there exists an
(o)-net (wγ)γ∈Γ such that, for every γ ∈ Γ and whenever x ∈ [a, b] with 0 < h ≤
γ(x), we have 0 ≥ g(x − h) − g(x) ≥ −wγ .

Let now C ∈ R+ be a Lipschitz constant for g, and let (pγ)γ∈Γ be an (o)-net,
for which the inequality (3) from Proposition 3.4 holds with φ(x, h) = Δ2Ψ(x,h)

h2

(taking into account that Ψ is a major function of order 2 for f). Now to use
Lemma 8.4 we put for every γ ∈ Γ and x ∈]a, b[ with 0 < h ≤ γ(x):

v = D2Ψ(x) , y = g(x) , p = pγ , w = wγ ,

u =
Δ2Ψ(x, h)

h2
, z = g(x − h) .

Then we obtain from (11)

Δ2Ψ(x, h)
h2

g(x − h) ≥ D2Ψ(x) g(x) − [

D2Ψ(x)
]+

wγ − pγg(x) .

Summing up all the above estimations including (14), (15), (17), (18), (19),
(20) and taking into account positivity and monotonicity of g we eventually get
for all γ ∈ Γ and x ∈]a, b[:

inf
0<h≤γ(x)

Δ2S(x, h)
h2

≥ −Lzγ − 2Czγ + D2Ψ(x) g(x)

− [

D2Ψ(x)
]+

wγ − pγg(x)

+ Ψ′(x)g′(x) − 1
3
γ(x)L∗ M∗ − K0 zγ .

Hence by Definition 3.2 of the global lim inf we obtain the inequality

D2S(x) ≥ D2Ψ(x) g(x) + Ψ′(x)g′(x) for all x ∈]a, b[ .

As Ψ is a major function of order 2 for f and g(x) ≥ 0 for every x ∈ [a, b], then
we get the existence of a set E ⊂]a, b[ such that ]a, b[\E is countable and

D2S(x) ≥ f(x) g(x) + Ψ′(x)g′(x) for each x ∈ E .

Since g′(x) ≥ 0, from Theorem 7.9 we finally obtain:

D2S(x) ≥ f(x) g(x) + I2
′(x) g′(x) for any x ∈ E .
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So, we have proved that S is a major function for f · g + I2
′ · g′. Analogously, if

we define

Z(x) = Φ(x)g(x) − (P1)
∫ x

a

Φ · g′, x ∈ [a, b] , (21)

where Φ is any minor function of order 2 for f , we prove that Z is a minor function
of order 2 for f · g + I ′2 · g′.

Let now F and S be the classes of all major and minor functions of order 2
for f · g + I ′2 · g′ respectively, and F1 be the class of that major functions of order 2
for f · g + I ′2 · g′ of the form (12). For all x ∈ [a, b] we have

S(x) − I2(x)g(x) + (P1)
∫ x

a

I2 · g′ = Ψ(x)g(x) − I2(x)g(x)

− (P1)
∫ x

a

[

Ψ(t) − I2(t)
]

g′(t)dt .

From this it follows that

0 ≤ inf
S∈F

(

sup
x∈[a,b]

(

S(x) − I2(x)g(x) + (P1)
∫ x

a

I2 · g′
))

≤ inf
S∈F1

(

sup
x∈[a,b]

(

S(x) − I2(x)g(x) + (P1)
∫ x

a

I2 · g′
))

≤ inf
S∈F1

(

sup
x∈[a,b]

(

Ψ(x)g(x) − I2(x)g(x) − (P1)
∫ x

a

[

Ψ(t) − I2(t)
]

g′(t)dt

))

= inf
Ψ∈G2

(

sup
x∈[a,b]

(

Ψ(x)g(x) − I2(x)g(x) − (P1)
∫ x

a

[

Ψ(t) − I2(t)
]

g′(t)dt

))

= 0 ,

thanks to the properties of the integral function I2 and boundedness of g. Analo-
gously we get:

sup
Z∈S

(

sup
x∈[a,b]

(

I2(x) g(x) − (P1)
∫ x

a

I2 · g′ − Z(x)
))

= 0 .

Thus we have proved that the function f · g + I ′2 · g′ is P2-integrable, and

(P2)
∫ x

a

(f · g + I ′2 · g′) = I2(x) g(x) − (P1)
∫ x

a

I2 · g′, x ∈ [a, b] .

Now, by Theorem 7.9, I ′2 is P1-integrable and, by virtue of the theorem of inte-
gration by parts for the P1-integral, we get that I ′2 · g′ is P1-integrable too. Thus,
by Theorem 7.8, I ′2 · g′ is P2-integrable and

(P2)
∫ b

a

I ′2 · g′ = (P1)
∫ b

a

[

(P1)
∫ x

a

I ′2(t) g′(t) dt

]

dx .
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Thus, by Proposition 7.2, f · g is P2-integrable too, and we get:

(P2)
∫ b

a

f · g + (P1)
∫ b

a

[

(P1)
∫ x

a

I ′2(t) g′(t) dt

]

dx = I2(b)g(b) − (P1)
∫ b

a

I2 · g′ .

�
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Università degli Studi di Perugia
Via Vanvitelli, 1
I-06123 Perugia
Italy
e-mail: boccuto@dipmat.unipg.it

boccuto@yahoo.it

matears1@unipg.it

V.A. Skvortsov
Department of Mathematics
Moscow State University
RUS-119992 Moscow
Russia
and
Mathematical Institute
Universytet Kazimierza Wielkiego
PL-85-065 Bydgoszcz
Poland
e-mail: vaskvor2000@yahoo.com

Received: September 4, 2006.

Revised: May 4, 2007.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00417
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


