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The Henstock-Kurzweil integral for functions

defined on unbounded intervals

and with values in Banach spaces

A. Boccuto – A. R. Sambucini1

ABSTRACT. A Henstock-Kurzweil-type integral for functions defined on a (possibly un-

bounded) subinterval on the extended real line and with values in Banach spaces is investi-

gated.

1 Introduction.

In the literature, there are several studies about the Henstock-Kurzweil integral in

Banach spaces: among them, we recall Cao, Fremlin and Mendoza ([2-6]). In this

paper we introduce and investigate a Henstock-Kurzweil-type integral for Riesz-space-

valued functions defined on (not necessarily bounded) subintervals of the extended real

line. We prove some basic properties, among which the fact that our integral contains

the generalized Riemann integral and that every simple function which vanishes outside

of a set of finite Lebesgue measure is integrable according to our definition, and in this

case our integral coincides with the usual one.

1A.M.S. SUBJECT CLASSIFICATION (2000): 28B15, 28B05, 28B10.
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2 The Henstock-Kurzweil integral in Banach spaces.

Let IN be the set of all strictly positive integers, IR the set of the real numbers, IR+

be the set of all strictly positive real numbers, ĨR the set of all extended real numbers.

We will construct a type of integral for Banach-space-valued maps (with respect to

the Lebesgue measure defined on intervals, not necessarily bounded), containing the

improper Riemann integral. From now on, we denote by [A, B] a closed interval or

halfline contained in ĨR, or the whole of ĨR, and by ∆ the set of all positive real-valued

functions, defined on [A, B]. Moreover, given a measurable set E ⊂ ĨR, we denote by

|E| its Lebesgue measure (this quantity can be finite or +∞). Throughout this section,

our integral deals with Banach-space-valued functions defined on [A, B], but it can be

investigated analogously if we take functions defined on IR or on halflines of the type

[a, +∞) or (−∞, a], with a ∈ IR.

Definitions 2.1 A subpartition Π of [A, B] is a set of pairs (Ik, ξk), k = 1, . . . , p,

such that ξk ∈ Ik ∀ k, and the Ik’s are non-overlapping closed intervals, contained in

[A, B]. A partition Π = {(Ik, ξk), k = 1, . . . , p} of [A, B] is a subpartition of [A, B]

with
p⋃

k=1

Ik = [A, B].

A gauge is a map γ defined in [A, B] and taking values in the set of all open intervals

in ĨR, such that ξ ∈ γ(ξ) for every ξ ∈ [A, B] and γ(ξ) is a bounded open interval for

every ξ ∈ IR
⋂

[A, B]. Given a gauge γ, we will say that a partition Π = {(Ik, ξk), k =

1, . . . , p} of [A, B] is γ-fine if Ik ⊂ γ(ξk) ∀ k = 1, . . . , p. Given a bounded interval

[a, b] ⊂ IR and a map δ : [a, b] → IR+, a partition Π = {(Ik, ξk), k = 1, . . . , p} of [a, b] is

said to be δ-fine if Ik ⊂ (ξk − δ(ξk), ξk + δ(ξk)) ∀ k = 1, . . . , p.

We note that, if Ik is an unbounded interval, then the element ξk associated with Ik

is necessarily +∞ or −∞: otherwise γ(ξk) should be a bounded interval and contain

an unbounded interval: contradiction.

Let S be any Banach space. Given any partition Π = {(Ik, ξk), k = 1, . . . , p} of

[A, B] and a function f : [A, B] → S, we call Riemann sum of f (and we write
∑
Π

f)

the quantity

p∑
k=1

|Ik| f(ξk), (1)
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where in the sum in (1) only the terms for which Ik is a bounded interval are included.

This can be required by simply postulating it or by defining the measure of an un-

bounded interval as +∞, by requiring f(+∞) = f(−∞) = 0 and by means of the

convention 0 · (+∞) = 0 (see also [7], p. 65).

We now formulate our definition of Henstock-Kurzweil integral for functions defined

on [A, B] and taking values in a Banach space S.

Definition 2.2 We say that a function f : [A, B] → S is Henstock-Kurzweil integrable

(in short HK-integrable ) on [A, B] if there exists an element I ∈ S such that ∀ ε > 0

there exist a function δ ∈ ∆ and a positive real number P such that∥∥∥∥∥∑
Π

f − I

∥∥∥∥∥ ≤ ε (2)

whenever Π = {(Ik, ξk), k = 1, . . . , p} is a δ-fine partition of any bounded interval [a, b]

with [a, b] ⊃ [A, B]
⋂

[−P, P ] and [a, b] ⊂ [A, B]. In this case we say that I is the

HK-integral of f , and we denote the element I by the symbol
∫ B

A
f . Later we will

prove that our integral is well-defined, that is such an I is uniquely determined.

We now prove the following characterization of HK-integrability.

Theorem 2.3 A function f : [A, B] → S is HK-integrable if and only if there exists

J ∈ S such that ∀ ε > 0 there exists a gauge γ such that∥∥∥∥∥∑
Π

f − J

∥∥∥∥∥ ≤ ε (3)

whenever Π = {(Ik, ξk), k = 1, . . . , p} is a γ-fine partition of [A, B], and in this case

we have
∫ B

A
f = J .

Proof: We begin with the ”only if” part. By hypothesis, ∀ ε > 0 there exist a function

δ ∈ ∆ and a positive real number P such that (2) holds. We now define on [A, B] a

gauge γ in the following way:

γ(ξ) =



(ξ − δ(ξ), ξ + δ(ξ)) if ξ ∈ [A, B]
⋂

IR,

[−∞,−P ) if ξ = −∞ and A = −∞,

(P, +∞] if ξ = +∞ and B = +∞.
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We observe that every γ-fine partition Π = {(Ik, ξk), k = 1, . . . , p} of [A, B] is such

that Ik ⊂ γ(ξk) ∀ k = 1, . . . , p. In the case A = −∞, B = +∞, the partition Π

contains two unbounded intervals, which we call J and K: of course, if inf J = −∞
and sup K = +∞, then the ξk’s associated with J and K are −∞ and +∞ respectively.

Then, since Π is γ-fine, we have J ⊂ γ(−∞) and K ⊂ γ(+∞). Then J ⊂ [−∞,−P )

and K ⊂ (P, +∞]. So, if a = sup J and b = inf K, then [a, b] is a bounded interval,

containing [−P, P ]. If Π′ is the restriction of Π to [a, b], then Π′ is δ-fine, and by

construction we get

∑
Π′

f =
∑
Π

f. (4)

In this case, the assertion follows from (2) and (4).

In the case A ∈ IR, B = +∞, the partition Π contains only an unbounded interval

K, with sup K = +∞. Let P be associated with K as above, and b = inf K: we have

P ≤ b. We note that, without loss of generality, P can be taken greater than |A|. Thus,

[A, b] is a bounded interval, containing [−P, P ], and the assertion follows by proceeding

as in the previous case. The case A = −∞, B ∈ IR is analogous to the previous one.

Finally, if [A, B] is bounded, then the assertion is straightforward, because in this case

the number P can be taken greater than max(|A|, |B|) and, of course, (2) holds even

in the case [a, b] = [A, B]. This concludes the proof of the ”only if” part.

We now turn to the ”if” part. By hypothesis, we know that ∀ ε > 0 there exists a

gauge γ satisfying (3). By definition of gauge, there exist δ1, δ2 ∈ ∆ such that

γ(ξ) = (ξ − δ1(ξ), ξ + δ2(ξ)) ∀ ξ ∈ [A, B]
⋂

IR.

For such ξ’s, let δ(ξ) = min{δ1(ξ), δ2(ξ)}. Moreover, if +∞ and −∞ belong to

[A, B], and γ(−∞) = [−∞, P ∗
1 ), γ(+∞) = (P ∗

2 , +∞], put P1 = min{P ∗
1 ,−1}, P2 =

max{P ∗
2 , 1}, P = max{−P1, P2}: we note that, in the case A ∈ IR (resp. B ∈ IR), P

can be chosen greater than |A| (resp. |B|); moreover, set δ(−∞) = δ(+∞) = P .

Let now [a, b] ⊂ [A, B] be any bounded interval, containing [A, B]
⋂

[−P, P ], and

Π = {(Ik, ξk) : k = 1, . . . , p} be a δ-fine partition of [a, b]. Let Π′ be that parti-

tion of [A, B], whose elements are the ones of Π with the addition of ([A, a], A), if

A = −∞, and ([b, B], B), if B = +∞: we note that Π′ is γ-fine. This follows from the
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fact that, if (Ik, ξk) is any element of Π, then

Ik ⊂ (ξk − δ(ξk), ξk + δ(ξk)) ⊂ (ξk − δ1(ξk), ξk + δ2(ξk)) = γ(ξk),

and from the following inclusions:

(b, +∞] ⊂ (P, +∞] ⊂ (P2, +∞] ⊂ (P ∗
2 , +∞] = γ(+∞),

[−∞, a) ⊂ [−∞, P ) ⊂ [−∞, P1) ⊂ [−∞, P ∗
1 ) = γ(−∞).

Then, taking into account that the Riemann sum concerning the partition Π′ is done

without considering the unbounded intervals, we get
∑
Π′

f =
∑
Π

f . From this and (3)

the assertion follows, by proceeding analogously as at the end of the proof of the

converse implication. This concludes the proof of the theorem. 2

Remark 2.4 We note that the Henstock-Kurzweil integral is well-defined, that is there

exists at most one element I, satisfying condition (3): indeed, if ∃ such two elements

I, J , then ∀ ε > 0 ∃ two gauges γ1, γ2 such that, for each γ1-fine partition Π and for

every γ2-fine partition Π′ of [A, B] we have∥∥∥∥∥∑
Π

f − I

∥∥∥∥∥ ≤ ε

and ∥∥∥∥∥∑
Π′

f − J

∥∥∥∥∥ ≤ ε

respectively. Let now γ(ξ) = γ1(ξ)
⋂

γ2(ξ), ∀ ξ ∈ [A, B] and take any γ-fine partition

Π′′: then Π′′ is both γ1- and γ2-fine, and thus we have

0 ≤ ‖I − J‖ ≤ 2 ε.

By arbitrariness of ε > 0, it follows that ‖I − J‖ = 0, and thus I = J . So our

HK-integral is well-defined. 2

We now state the main properties of the HK-integral.

Proposition 2.5 If f1, f2 are HK-integrable on [A, B] and c1, c2 ∈ IR, then c1 f1+c2f2

is HK-integrable on [A, B] and∫ B

A
(c1 f1 + c2 f2) = c1

∫ B

A
f1 + c2

∫ B

A
f2.
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The proof is similar to the one of [7], Theorems 2.5.1 and 2.5.3.

Proposition 2.6 Let A, B ∈ ĨR, and c be such that A < c < B. If f : [A, B] → S is

HK-integrable both on [A, c] and on [c, B], then f is HK-integrable on [A, B] and

∫ B

A
f =

∫ c

A
f +

∫ B

c
f.

Proof: In correspondence with HK-integrability of f on [A, c] and [c, B], ∀ ε > 0 there

exist two mappings δ : [A, c] → IR+, δ : [c, B] → IR+, and two positive real numbers

P and P (without loss of generality, P > |c|, P > |c|) such that, if Π is any δ-fine

partition of any bounded interval [a1, b1] ⊂ [A, c], [a1, b1] ⊃ [A, c]
⋂

[−P , P ] and Π is

any δ-fine partition of any bounded interval [a2, b2] ⊂ [c, B], [a2, b2] ⊃ [c, B]
⋂

[−P , P ],

then ∥∥∥∥∥∥
∑
Π

f −
∫ b1

a1

f

∥∥∥∥∥∥ ≤ ε

2

and ∥∥∥∥∥∥
∑
Π

f −
∫ b2

a2

f

∥∥∥∥∥∥ ≤ ε

2
.

If A = −∞, let δ(−∞) = δ(−∞); if B = +∞, let δ(+∞) = δ(+∞). Moreover, set

δ(x) =



min
{
δ(x), 1

2
(c− x)

}
if x ∈ [A, c)

⋂
IR,

min
{
δ(x), 1

2
(x− c)

}
if x ∈ (c, B]

⋂
IR,

min{δ(c), δ(c)} if x = c,

and P = max{P , P}. Take now any arbitrary bounded interval [a, b] ⊂ [A, B], [a, b] ⊃
[A, B]

⋂
[−P, P ], and any δ-fine partition Π = {([uk, vk], ξk), k = 1, . . . , p} of [a, b].

Then necessarily c ∈ (a, b). We now claim that there exists k ∈ {1, . . . , p} such that

c = ξk, or c = uk, or c = vk. Otherwise there would be an interval [uj, vj] such that

uj < c < vj and either c < ξj < vj or uj < ξj < c. Since Π is δ-fine, we should get

[uj, vj] ⊂ (ξj − δ(ξj), ξj + δ(ξj)) and thus vj − uj < 2 δ(ξj). So vj − uj < ξj − c if ξj > c

or vj −uj < c− ξj if ξj < c. This would imply that ξj is outside (uj, vj), contradiction.
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Thus we have:

∑
Π

f =
j−1∑
l=1

f(ξl)(vl − ul) + f(ξj)(vj − uj) +
p∑

l=j+1

f(ξl)(vl − ul) (5)

=
j−1∑
l=1

f(ξl)(vl − ul) + f(ξj)(ξj − uj) + f(ξj)(vj − ξj) +
p∑

l=j+1

f(ξl)(vl − ul).

The quantity Sc
a =

j−1∑
l=1

f(ξl)(vl − ul) + f(ξj)(ξj − uj) is a Riemann sum for a suitable

δ-fine partition of [a, c], which is a bounded interval contained in [A, c] and containing

[A, c]
⋂

[−P , P ], by construction.

Analogously, the quantity Sb
c = f(ξj)(vj − ξj) +

p∑
l=j+1

f(ξl)(vl − ul) is a Riemann sum

for a suitable δ-fine partition of [c, b], which is a bounded interval contained in [c, B]

and containing [c, B]
⋂

[−P , P ]. Thus we have:

∥∥∥∥Sc
a −

∫ c

A
f
∥∥∥∥ ≤ ε

2
,

∥∥∥∥∥Sb
c −

∫ B

c
f

∥∥∥∥∥ ≤ ε

2
,

and hence ∥∥∥∥∥∑
Π

f −
∫ c

A
f −

∫ B

c
f

∥∥∥∥∥ ≤ ε.

Thus the assertion follows. 2

We now state two versions of the Cauchy criterion.

Theorem 2.7 A map f : [A, B] → S is HK-integrable if and only if ∀ ε > 0 ∃ a

gauge γ such that for every γ-fine partition Π1, Π2 of [A, B] we have∥∥∥∥∥∥
∑
Π1

f −
∑
Π2

f

∥∥∥∥∥∥ ≤ ε. (6)

Proof: (see also [8]) The necessary part is straightforward.

We now turn to the sufficient part. By hypothesis, condition (6) holds even for ε =
1

n
,

with n ∈ IN . Let γn be a corresponding gauge. Without loss of generality, we can

suppose that

γn+1(x) ⊂ γn(x) ∀x ∈ [A, B]. (7)



10 A. Boccuto – A. R. Sambucini

Let (Πn)n be a sequence of partitions of [A, B] such that Πn is γn-fine ∀n ∈ IN . From

(7) it follows that, ∀n, p ∈ IN , every γn+p-fine partition is also γn-fine. Thus, in

correspondence with ε > 0, let n be such that
1

n
≤ ε: for n ≥ n and p ∈ IN we have:∥∥∥∥∥∥

∑
Πn+p

f −
∑
Πn

f

∥∥∥∥∥∥ ≤ ε.

Thus it follows that the sequence

∑
Πn

f


n

is Cauchy, and thus convergent, because

of completeness of S. Let I = lim
n

∑
Πn

f . Fix arbitrarily ε > 0. Then there exists an

integer n∗, n∗ >
2

ε
, such that ∥∥∥∥∥∥

∑
Πn∗

f − I

∥∥∥∥∥∥ ≤ ε

2
.

Let γ = γn∗ . If Π is any γ-fine partition of [A, B], then∥∥∥∥∥∑
Π

f − I

∥∥∥∥∥ ≤

∥∥∥∥∥∥
∑
Π

f −
∑
Πn∗

f

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑
Πn∗

f − I

∥∥∥∥∥∥ (8)

≤ 1

n∗
+

ε

2
<

ε

2
+

ε

2
= ε.

The assertion follows from (8). 2

Theorem 2.8 A map f : [A, B] → S is HK-integrable if and only if ∀ ε > 0 ∃ a map

δ ∈ ∆ and a positive real number P such that∥∥∥∥∥∥
∑
Π1

f −
∑
Π2

f

∥∥∥∥∥∥ ≤ ε

whenever Π1, Π2 are δ-fine partitions of any bounded interval [a, b], with [a, b] ⊂ [A, B]

and [a, b] ⊃ [A, B]
⋂

[−P, P ].

Proof: The proof is similar to the one of Theorem 2.7. 2

We now prove a result about HK-integrability on subintervals.

Theorem 2.9 Let f : [A, B] → S be HK-integrable, and A < c < B. Then f|[A,c] and

f|[c,B] are HK-integrable too, and∫ B

A
f =

∫ c

A
f +

∫ B

c
f. (9)
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Proof: By virtue of Theorem 2.7, ∀ ε > 0 ∃ a gauge γ on [A, B] such that for all γ-fine

partitions Π1 and Π2 of [A, B] we have∥∥∥∥∥∥
∑
Π1

f −
∑
Π2

f

∥∥∥∥∥∥ ≤ ε. (10)

Set γ0 = γ|[A,c] and let Π, Π
′

be any two γ0-fine partitions of [A, c]. By virtue of

the Cousin Lemma there exists a γ-fine partition Π0 of [c, B]. Put Π1 = Π
⋃

Π0,

Π2 = Π′ ⋃Π0. Then Π1 and Π2 are γ-fine partitions of [A, B]. Moreover, we get

∑
Π1

f =
∑
Π

f +
∑
Π0

f,
∑
Π2

f =
∑
Π′

f +
∑
Π0

f. (11)

From (10) and (11) we have ∥∥∥∥∥∑
Π

f −
∑
Π′

f

∥∥∥∥∥ ≤ ε. (12)

From (12) and Theorem 2.7 it follows that f|[A,c] is HK-integrable. The proof of HK-

integrability of f|[c,B] is analogous. The equality (9) follows from this and Proposition

2.6. 2

We now prove the following:

Theorem 2.10 Let f : [A, B] → S be an HK-integrable function. Let A < c < B.

Then the function g = f χ[A,c] is HK-integrable on [A, B], and
∫ c

A
f =

∫ B

A
g.

Proof: First of all, we note that c ∈ IR, and g is HK-integrable on [A, c], because g

coincides with f in [A, c] and, by virtue of Theorem 2.9, f is HK-integrable on [A, c].

Moreover, it is easy to see that g is HK-integrable on [c, B] and
∫ B

c
g = 0. So, by

virtue of Proposition 2.6, we get that g is HK-integrable on [A, B] and

∫ B

A
g =

∫ c

A
g +

∫ B

c
g =

∫ c

A
f. (13)

This concludes the proof. 2.

Remark 2.11 In an analogous way it is possible to prove that h = f χ[c,B] is HK-

integrable on [A, B] and
∫ B

c
f =

∫ B

A
h.
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Corollary 2.12 Let f : [A, B] → S be HK-integrable on [A, B], and let A < c < c′ <

B. Then the map l = f χ[c,c′] is HK-integrable on [A, B], and
∫ c′

c
f =

∫ B

A
l.

Proof: First of all, we note that c, c′ ∈ IR. Let k = f|[A,c′]: by virtue of Theorem 2.9,

k is HK-integrable on [A, c′], and by Theorem 2.10, where the rôle of A, B, c is played

by A, c′, c respectively, the function

l′ = k χ[c,c′] = f|[A,c′] χ[c,c′]

is HK-integrable on [A, c′], and
∫ c′

c
f =

∫ c′

c
k =

∫ c′

A
l′. Moreover, since l coincides with

l′ on [A, c′] and vanishes on (c′, B], then, thanks to Proposition 2.6, we get that l is

HK-integrable on [A, B] and
∫ B

A
l =

∫ c′

A
l′. From this the assertion follows. 2

Now, given an interval [a, b] ⊂ IR, a partition Π = {([xk−1, xk], ξk), k = 1, 2, . . . p} and a

point c ∈ (a, b), if c coincides with some xk, let Π1(Π2) be the partition of all elements

of Π which are contained in [a, c] ([c, b]) respectively, and put

∑
Π

c
a f =

∑
Π1

f,
∑
Π

b
c f =

∑
Π2

f.

If c ∈ (xk−1, xk) for some k = 1, . . . , p, then put

∑
Π

c
a f =

k−1∑
l=1

f(ξl)(xl − xl−1) + f(c)(c− xk−1);

∑
Π

b
c f = f(c)(xk − c) +

p∑
l=k+1

f(ξl)(xl − xl−1).

In the sequel, when we will deal with the interval [a, b] or [A, B], sometimes we will

write
∑

Π
b
a f , or

∑
Π

B
A f respectively, instead of

∑
Π f , in order to avoid confusion.

We now prove the following theorem (for the proof in the case S = IR, see [7], Lemma

2.8.1., pp. 56-57):

Theorem 2.13 Let [a, b] ⊂ IR be a bounded interval, f : [a, b] → S be a HK-integrable

function, ε > 0, and δ : [a, b] → IR+ such that, for every δ-fine partition Π′ of [a, b],∥∥∥∥∥∑
Π′

b
a f −

∫ b

a
f

∥∥∥∥∥ ≤ ε. (14)
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Then δ is such that, ∀ c ∈ (a, b) and for every δ-fine partition Π of [a, b],∥∥∥∥∥∑
Π

c
a f −

∫ c

a
f

∥∥∥∥∥ ≤ 2ε,

∥∥∥∥∥∑
Π

b
c f −

∫ b

c
f

∥∥∥∥∥ ≤ 2ε. (15)

Proof: Let Π be a δ-fine partition of [a, b]. By virtue of Theorem 2.9, f is HK-

integrable in [a, c], and thus there exists a function δc : [a, c] → IR+ such that for every

δc-fine partition Π′
c of [a, c] we have:∥∥∥∥∥∥

∑
Π′

c

c
a f −

∫ c

a
f

∥∥∥∥∥∥ ≤ ε. (16)

Let now Πc be a δ- and δc-fine partition of [a, c]. Moreover, let Π0 be that partition

of [c, b] consisting of those elements ([xl−1, xl], ξl) of Π such that the intervals [xl−1, xl]

are contained in [c, b] and eventually of (J, c), where J is the intersection of [c, b] with

that (eventual) interval [xk−1, xk] for which xk−1 < c < xk. Let Π′ be that partition

consisting of the ”union” of Πc and Π0: Π′ is δ-fine, and we have:

∑
Π

b
c f −

∫ b

c
f =

∑
Π0

b
c f −

∫ b

c
f

=
∑
Π′

b
c f −

∫ b

c
f =

∑
Π′

b
a f −

∫ b

a
f

−
(∑

Π′

c
a f −

∫ c

a
f

)
=
∑
Π′

b
a f −

∫ b

a
f

−

∑
Πc

c
a f −

∫ c

a
f

 .

By virtue of (14) and (16) we get:∥∥∥∥∥∑
Π

b
c f −

∫ b

c
f

∥∥∥∥∥ ≤
∥∥∥∥∥∑

Π′

b
a f −

∫ b

a
f

∥∥∥∥∥+

∥∥∥∥∥∥
∑
Πc

c
a f −

∫ c

a
f

∥∥∥∥∥∥ ≤ 2ε.

This proves the second inequality of (15). The proof of the first inequality of (15) is

analogous. 2

3 Comparison with the improper integral

We now prove that the HK-integral above defined contains the improper Riemann

integral (For the real case, see [7], Theorem 2.9.3., pp. 61-63).
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Theorem 3.1 Let a ∈ IR, f : [a, +∞] → S be HK-integrable on [a, +∞]. Then f is

HK-integrable on every interval [a, b] with a < b < +∞, and

lim
b→+∞

∫ b

a
f =

∫ +∞

a
f.

Conversely, if f : [a, +∞] → S is HK-integrable on every interval [a, b] with a < b <

+∞ and there exists in S the limit l = lim
b→+∞

∫ b

a
f , then f is HK-integrable on [a, +∞]

and
∫ +∞

a
f = l.

Proof: We begin with the first part of the theorem. Since f : [a, +∞] → S is HK-

integrable, then ∀ ε > 0 ∃ δ : [a, +∞] → IR+ and ∃P > |a|, such that for each bounded

interval [d1, d2] with [d1, d2] ⊂ [a, +∞], [d1, d2] ⊃ [a, +∞]
⋂

[−P, P ], and for every δ-fine

partition Π of [d1, d2] we have:∥∥∥∥∥∑
Π

f −
∫ +∞

a
f

∥∥∥∥∥ ≤ ε

2
. (17)

Now, by virtue of Theorem 2.9, f is HK-integrable on [a, b] for every b ∈ (a, +∞], and

hence we get that ∀ ε > 0, ∀ b ∈ (a, +∞], ∃ δ1 : [a, b] → IR+ such that for each δ1-fine

partition Π′ of [a, b] we get: ∥∥∥∥∥∑
Π′

f −
∫ b

a
f

∥∥∥∥∥ ≤ ε

2
. (18)

Let us define δ2 : [a, b] → IR+ by setting δ2(x) = min{δ(x), δ1(x)}, and let Π be a

δ2-fine partition of [a, b], b > P . Then, thanks to (17) and (18), ∀ ε > 0 ∃P > 0:

∀ b > P , ∥∥∥∥∥
∫ b

a
f −

∫ +∞

a
f

∥∥∥∥∥ ≤
∥∥∥∥∥∑

Π

f −
∫ b

a
f

∥∥∥∥∥+

∥∥∥∥∥∑
Π

f −
∫ +∞

a
f

∥∥∥∥∥ ≤ ε.

Thus the first part is completely proved.

We now turn to the second part. By hypothesis, ∀ ε > 0, ∃P > 0: ∀ b > P we get∥∥∥∥∥
∫ b

a
f − l

∥∥∥∥∥ ≤ ε

2
. (19)

Let now (bn)n be a strictly increasing sequence of real numbers, such that limn bn = +∞
and b1 = a. We observe that, by virtue of Theorem 2.9, f is HK-integrable in [bn, bn+1]
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for each n. So, ∀ ε > 0 and ∀n ∈ IN , ∃ a function δn : [bn, bn+1] → IR+ such that∥∥∥∥∥∥
∑
Πn

f −
∫ bn+1

bn

f

∥∥∥∥∥∥ ≤ ε

2n+1
(20)

whenever Πn is any δ-fine partition of [bn, bn+1].

Let now δ : [a, +∞] → IR+ be such that, ∀n ∈ IN ,

δ(ξ) ≤ δn(ξ) if ξ ∈ [bn, bn+1],

[ξ − δ(ξ), ξ + δ(ξ)] ⊂ (bn, bn+1) if ξ ∈ (bn, bn+1),

(bn − δ(bn), bn + δ(bn)) ⊂ (bn−1, bn+1).

(21)

Choose now arbitrarily b > P . If bN < b ≤ bN+1 and Π = {([xk−1, xk], ξk), k =

1, 2, . . . p} is a partition of [a, b], then each bn, with n ≤ N , must belong to some

interval [xk−1, xk]. So, either bn coincides with some xk’s, or bn ∈ (xk−1, xk). In this

last case, from (21) and the fact that Π is δ-fine it follows that ξk 6∈ (bn, bn+1), otherwise

[xk−1, xk] ⊂ (ξk − δ(ξk), ξk + δ(ξk)) ⊂ (bn, bn+1) :

this is a contradiction. Analogously, ξk 6∈ (bn−1, bn), and in general, if j ∈ IN is such

that bj ∈ (xk−1, xk), we have necessarily ξk 6∈ (bj−1, bj), ξk 6∈ (bj, bj+1): otherwise

[xk−1, xk] ⊂ (bj−1, bj) or [xk−1, xk] ⊂ (bj, bj+1): this is absurd. Thus ξk does coincide

with some bj0 . From the third condition in (21) and the fact that Π is δ-fine it follows

that

[xk−1, xk] ⊂ (ξk − δ(ξk), ξk + δ(ξk)) (22)

= (bj0 − δ(bj0), bj0 + δ(bj0)) ⊂ (bj0−1, bj0+1).

But we know that, by hypothesis, bn ∈ (xk−1, xk), and from (22) it follows that j0 = n

and that no bj but bn belongs to (xk−1, xk). So, all the bn’s do coincide either with

some xk or with some ξk. So, Π is the partition of [a, b] ”determined” by the xk’s and

the bn’s. We have:

∑
Π

b
a f =

N−1∑
n=1

(∑
Π

bn+1

bn
f

)
+
∑
Π

b
bN

f. (23)
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Since the restriction of Π to [bn, bn+1] is δn-fine, from (20) it follows that

N−1∑
n=1

∥∥∥∥∥∑
Π

bn+1

bn
f −

∫ bn+1

bn

f

∥∥∥∥∥ ≤ ε

2
. (24)

From (19), (23) and (24) we have:∥∥∥∥∥∑
Π

b
a f − l

∥∥∥∥∥ ≤ ε

2
+

ε

2
+

∥∥∥∥∥∑
Π

b
bN

f −
∫ b

bN

f

∥∥∥∥∥ .

Since the restriction of Π to [bN , b] is δN -fine, then Π can be ”extended” to a δN -fine

partition Π′ of [bN , bN+1]. By Theorem 2.13, where the rôles of [a, b] and c are played

by [bN , bN+1] and b respectively, we get∥∥∥∥∥∑
Π

b
bN

f −
∫ b

bN

f

∥∥∥∥∥ ≤ ε

2N
< ε.

From this the assertion follows. 2

Remark 3.2 We observe that theorems similar to Theorem 3.1 hold even if we consider

open, semi-open and/or left halflines, IR or ĨR, instead of [a, +∞].

We now prove that every simple measurable function defined on IR, and assuming

values different from zero only on a set of finite Lebesgue measure, is HK-integrable

according to our definition, and in this case our integral coincides with the usual one.

To do this, thanks to Proposition 2.5, it is sufficient to prove the following:

Theorem 3.3 Let E ⊂ IR be a Lebesgue measurable set with |E| < +∞, r ∈ S,

and χE be the characteristic function associated with E. Then the function χE r is

HK-integrable, and
∫ +∞

−∞
χE r = |E|r.

Proof: By virtue of [7], p. 136, we know that the theorem is true in the particular

case S = IR and r = 1. Thus for every ε > 0 there exists a gauge γ, defined on IR,

such that for each γ-fine partition Π of IR we get∣∣∣∣∣∑
Π

χE − |E|
∣∣∣∣∣ ≤ ε. (25)

Moreover, it is easy to see that for each partition Π of IR we have∑
Π

χE r =

(∑
Π

χE

)
r. (26)

The assertion follows from (25), (26) and (uniform) continuity of the ”norm” map in

Banach spaces. 2
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