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Abstract. We consider some inequalities in such classical Banach Function Spaces as Lorentz,
Marcinkiewicz, and Orlicz spaces. Our aim is to explore connections between the norm of a function
of two variables on the product space and the mixed norm of the same function, where mixed norm
is calculated in function spaces on coordinate spaces, first in one variable, then in the other. This
issue is motivated by various problems of functional analysis and theory of functions. We will
currently mention just geometry of spaces of vector-valued functions and embedding theorems for
Sobolev and Besov spaces generated by metrics which differ from Lp. Our main results are actually
counterexamples for Lorentz spaces versus the natural intuition that arises from the easier case of
Orlicz spaces (Section 2). In the Appendix we give a proof for the Kolmogorov–Nagumo theorem
on change of order of mixed norm calculation in its most general form. This result shows that Lp is
the only space where it is possible to change this order.

AMS subject classification: Primary 46E30; Secondary 26D15, 28A35, 46E40

Key words: Banach Function Spaces, spaces with mixed norms, mixed norm inequalities for func-
tions of many variables, Lorentz spaces

0. Introduction

The main goal of this paper is to explore the validity of two (L∞-MNP) and
(L1-MNP) inequalities given below. Let (T1, �1, µ1) and (T2, �2, µ2) be two non-
atomic measure spaces with µ1(T1) = µ2(T2) = 1, and (T ,�,µ) be their product.
We take a Banach Function Space E on (T2, �2, µ2) (the space of ‘one’ variable)
and consider its ‘analogue’ Ẽ on T (the space of ‘two’ variables). Actually we

� Lavoro svolto nell’ ambito del G.N.A.F.A. del C.N.R.
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consider the cases when E (and, hence, Ẽ) is an Orlicz, Lorentz or Marcinkiewicz
space (on [0, 1] or [0, 1] × [0, 1] respectively, with the Lebesgue measure).

We are interested in two following conditions on E, which we call L∞-Mixed
Norm Property (L∞-MNP) and L1-Mixed Norm Property (L1-MNP) respectively:

(L∞-MNP) There exists a constant C > 0 such that for every K ∈ Ẽ we have

‖K(s, t)‖Ẽ,(s,t) ≤ C ess supt∈T1
‖K(s, t)‖E,s;

(L1-MNP)p There exists a constant C > 0 such that for every K ∈ Ẽ we have∫
T1

‖K(s, t)‖E,sdµ1(t) ≤ C ‖K(s, t)‖Ẽ,(s,t).

We have been motivated by many applications of the idea of splitting a multidi-
mensional variable. The most favorable situation appears in the Lp case where,
due to the Fubini theorem and the trivial identity 1

p
· p = 1, the change of the order

of mixed norm calculation is possible:

Lp(T1 × T2) = Lp(T1, L
p(T2)) = Lp(T2, L

p(T1)). (0.1)

Unfortunately, if we seek something similar for more general norms we face the
fact that, due to the generalized Kolmogorov–Nagumo theorem, equality (0.1) is
characteristic for Lp (Appendix).

Because of the ‘maximal’ nature of L1 and the ‘minimal’ nature of L∞ in the
class of Banach Function Spaces the Mixed Norm Properties above form a natural
set of weaker hypotheses on relations between the norm in a space on the product
and those on the coordinates. They proved to be useful in some applications.

In Section 2 we easily prove that both (L∞-MNP) and (L1-MNP) hold for Orlicz
spaces (this result is hardly new). Also (L1-MNP) holds for Lorentz spaces and
(L∞-MNP) holds for Marcinkiewicz spaces. It is more interesting and much less
trivial that usually the other property is false. This imposes restrictions on the use
of the corresponding inequalities, which is reasonable to take into account in some
applications. Theorems 2.6 and 2.10, our main results, are counterexamples.

Let us discuss some possible implications. First of all, since our main results are
counterexamples they can provide a researcher with the idea of a more complicated
answer or of use the tools more advanced than expected.

In the Lp case it is well known that the space of traces for a Sobolev space is a
suitable Besov space. The proof is based on splitting a multidimensional variable
and on formula (0.1), which is no longer true if we consider a Sobolev space gener-
ated by any metric more general than Lp-metrics. So, in this case it is necessary to
adopt quite a different technique, and the resulting trace space is described in terms
different from those describing a Besov space (see [8, 10]). The same idea applies
to estimation of singular integral operators in the Banach-space-valued setting (see
[7]).
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Nevertheless, even our easier results on validity of (L1-MNP) for Lorentz spaces
have been generalized to the non-commutative setting with applications to the ex-
istence of certain bases in the non-commutative rearrangement invariant spaces of
operators (see [36]).

Another source of motivation was found in the literature on the geometry of
spaces of vector-valued functions. Several theorems of the form:

if X is a Banach space with the property (P ), then the Banach space Lp(X)

possesses the property (P ),

have been established for various properties (P ). We quote here: [37] where (P )
is the Radon-Nikodym Property [14] (Theorem 5.1) where (P ) is the property
of existence of an isomorphic copy of c0, and [32] (Theorem 1) where (P ) is the
property of existence of an isomorphic copy of l1. All these results employ formula
(0.1). This was a serious restriction for generalizing such proofs to the spaces E(X)

where E is a general Banach Function Space. It was possible to observe that the
proofs in [14, 37] actually relied on a weaker fact, which is exactly (L∞-MNP)
and (L1-MNP) above. Hence, our counterexamples show that for Lorentz and
Marcinkiewicz spaces (including separable and reflexive) we cannot carry out such
proofs, though it is possible to prove the corresponding geometric facts by means
of other techniques. After the introduction of semi-embedding techniques this issue
has lost partly its importance (see, e.g., [13]).

It is impossible to cover here all the rich history of the inequalities considered
in this paper. To mention just a few sources we refer to the series of publications
of M. Milman (see, e.g., [27, 28]), devoted to the same and more general classes
of spaces, and to the papers of Bardaro, Musielak and G. Vinti on the inequalities
for modular function spaces (see [2]). Inequalities (L1-MNP) and (L∞-MNP) were
introduced by Bukhvalov in [6], where several results were announced. After the
presentation at the Seventh Meeting on Real Analysis and Measure Theory (July
1996; Ischia, Italy) the authors finished the main body of this joint paper by 1997
reporting then about it at a number of conferences and seminars including the In-
ternational Meeting ‘Positivity and Its Applications’ (June 1998; METU, Ankara,
Turkey). Reference [36], devoted mainly to non-commutative setting, and inspired
by [6] and presentation at the Meeting on Real Analysis (see, [36], p.278), has some
minor overlapping with the results in Subsection 2.4 (for example, Proposition 4.2
of [36] is a very special case of Theorem 2.10).

1. Preliminaries

Generally, we follow the terminology and notation of [15] and [18]. For con-
venience of the readers we remind here several most important definitions and
results.
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1.1. BANACH FUNCTION SPACES

DEFINITION 1.1 Let (T ,�,µ) be a measure space. Denote by L0 = L0(T ,�,µ)

the space of all measurable a.e. finite functions. An ideal space on (T ,�,µ) is a
linear subset E of the space L0 such that

{x ∈ L0, y ∈ E, |x| ≤ |y|} �⇒ {x ∈ E}.
A norm ‖ · ‖ on an ideal space E is called monotone if

{x, y ∈ E, |x| ≤ |y|} �⇒ {‖x‖ ≤ ‖y‖}.
A Banach Function Space (BFS for short) is an ideal space E endowed with a
monotone norm with respect to which E is a Banach space.

For any BFS E we define the Banach function dual E′ by

E′ =
{
x′ ∈ L0 :

∫
T

|xx′ | dµ <∞ ∀x ∈ E

}
.

The dual space E′ can be identified with the space of integral functionals on E and
hence with the space of order continuous functionals.

Many properties of a BFS E can be expressed using the following conditions:

(A) if (xn)n is a sequence in E such that xn ↓ 0 then ‖xn‖ → 0;

(B) if 0 ≤ xn ↑, xn ∈ E for every n ∈ N and supn ‖xn‖ < ∞ then there exists
x ∈ E such that xn ↑ x;

(C) if xn ↑ x ∈ E then ‖xn‖ → ‖x‖.

Note, that in the literature property (C) is called also weak Fatou property.

1.2. REARRANGEMENT INVARIANT SPACES

DEFINITION 1.2 For every x ∈ E we can introduce its distribution function
µx(t) defined by the formula:

µx(t) = µ{τ ∈ T : |x(τ)| > t};
two functions x, y ∈ E are said to be equimeasurable (x ∼ y) if

µx(t) = µy(t) for every t ∈ R.

DEFINITION 1.3 A BFS E on (T ,�,µ) is a rearrangement invariant space (RIS
for short) if x ∈ E and x ∼ y imply that

y ∈ E and ‖x‖ = ‖y‖.
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DEFINITION 1.4 Given a measurable function x ∈ L0(T ,�,µ), we call non-
increasing rearrangement of |x| the function x∗ : T → R, defined by the formula

x∗(t) ≡ inf{α ≥ 0 : µ(τ ∈ T : |x(τ)| > α) ≤ t}.
If (T ,�,µ) is the Lebesgue measure on [0, 1] or [0,∞) then

{x ∈ E ⇐⇒ x∗ ∈ E} ⇐⇒ {E is a RIS}.
Now we remind the definitions of some important families of rearrangement

invariant spaces, i.e. Orlicz spaces LM , Lorentz spaces �(ψ,p) and Marcinkiewicz
spaces M(ψ,p).

DEFINITION 1.5 Let M : [0,∞) → [0,∞) be a convex and increasing function,
such that

M(0) = 0 and M(u) →∞ as u→∞.

The space of all measurable functions x such that there exists a positive real number
λ = λ(x) for which

IM(x, λ) ≡
∫
T

M

( |x(t)|
λ

)
dµ < ∞, (1.2)

with the Luxemburg norm ‖x‖M ≡ inf{λ > 0 : IM(x, λ) ≤ 1} is called the Orlicz
space LM .

DEFINITION 1.6 (see [19, 34]) Let 1 ≤ p < ∞, and ψ : [0,∞) → [0,∞) be
an increasing concave function such that

ψ(0) = 0, lim
t→∞ψ(t) = ∞ and lim

t→0

t

ψ(t)
= 0.

The space of all measurable functions x such that

‖x‖�(ψ,p) ≡
(∫ ∞

0
ψ(µ{s : |x(s)|p > τ })dτ

)1/p

=

=
(∫ ∞

0
(x∗(t))p dψ(t)

)1/p

<∞

is called the Lorentz space associated to ψ and p and it is denoted by �(ψ,p), or
simply �(ψ) when p = 1.
Analogously, the space of all measurable functions x such that

‖x‖M(ψ,p) ≡ sup
0<h<∞

1

ψ(h)

(∫ h

0
(x∗(t))p dt

)1/p

<∞,

is called the Marcinkiewicz space associated to ψ and p and it is denoted by
M(ψ,p) or M(ψ) when p = 1.
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It is well known that �(ψ)
′ = M(ψ) and M(ψ)

′ = �(ψ) (see [15] and, for
general p, see [34]).

DEFINITION 1.7 Let (T ,�,µ) be a measure space. We denote by the symbol
L(p, q) the space of all measurable functions x : T → R such that ‖f ‖p,q < ∞,
where

‖f ‖p,q =


[
q

p

∫ ∞

0
(t1/px∗(t))q · t−1 dt

]1/q

, if 1 ≤ p <∞, 1 ≤ q <∞

sup
t>0

t1/px∗(t), if 1 ≤ p ≤ ∞, q = ∞.

Let us state several known and elementary relations among the three spaces men-
tioned above.

PROPOSITION 1.8 For all 1 ≤ q < p < ∞ and 0 < α < 1 we have:
(a) �(tq/p, q) = L(p, q);
(b) �(α) = L( 1

α
, 1);

(c) M(α) = L( 1
1−α

,∞).

1.3. SPACES WITH MIXED NORM

We need to establish a uniform system of notation for product measure spaces and
associated BFS. Let (T1, �1, µ1) and (T2, �2, µ2) be two σ -finite measure spaces,
and (T ,�,µ) be their product. We usually denote by E a BFS on T2, with s as
a typical notation for a variable and x as a notation for a function. We consider
various spaces on T1 (e.g., L1, L∞, F ) with t as a typical notation for a variable.
Finally, we denote by K(s, t) a measurable function on the product. To emphasize
the role of the corresponding variables we use the self-explanatory notations like
‖K(s, t)‖E,s , ‖K(s, t)‖F,t , or ‖K(s, t)‖Ẽ,(s,t) .

DEFINITION 1.9 Let F be a BFS on T1 and E be a BFS on T2. Suppose that E
satisfies condition (C). Denote by F [E] the space:

F [E] = {K ∈ L0(T ,�,µ) : the function t �→ ‖K(·, t)‖E,s ∈ F ;
‖K‖F [E] ≡ ‖ ‖K(s, t)‖E,s‖F,t <∞}.

We call F [E] the space with mixed norm.

We impose property (C) to ensure measurability of the function t �→ ‖K(·, t)‖E,s

(see [24]; in [25] a couterexample for measurability is given). This is not an actual
restriction since all concrete spaces possess (C). In [3] one can find the proofs of
the fact that F [E] is a BFS and of other elementary properties.
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The main aim of this work is to establish some relations between the mixed
norm generated by a BFS on the coordinate spaces with the similar space on the
product. What do we mean by similar? If a BFS E on T2 is one of the classical
spaces defined on any measure space then no problem arises at all. Say, LM(T2)

is in an obvious sense similar to LM(T ) (though they can be even not isomorphic
depending on the properties of the measure space T1). In any such situation we
denote the space on T by Ẽ. Certainly, if, say, LM is an Orlicz space on [0, 1], then
L̃M is just LM in two variables. The same applies to Lorentz and Marcikiewicz
spaces.

It is less obvious what to do if E is a general RIS on T2, and we do not have any
definition of E for T . It is possible to introduce a general formalism following the
ideas of [11] on spaces of equimeasurable functions. We do not need to proceed
this far here.

1.4. CALDERON–LOZANOVSKII CONSTRUCTION

To reduce the consideration of spaces �(ψ,p) and M(ψ,p) to that of �(ψ) and
M(ψ) we use the so called, Calderon–Lozanovskii construction (see [34] for the
use of the same idea to describe the dual of �(ψ,p) using that of �(ψ)).

DEFINITION 1.10 Given two BFS E0 and E1 on the same measure space and
0 < s < 1, we denote by Es

0 E1−s
1 the BFS of all measurable functions e such

that there exist x ∈ E0 and y ∈ E1, with ‖x‖E0 = ‖y‖E1 = 1, and γ ≥ 0, with
|e| ≤ γ xs y1−s , equipped with the norm

‖e‖Es
0 E1−s

1
≡ inf{γ : |e| ≤ γ xs y1−s , ‖x‖E0 , ‖y‖E1 = 1}.

Many useful properties and generalizations of the construction (including im-
portant duality equalities) have been invented by Lozanovskii (see [20]–[23]). Just
for the sake of completeness let us note that quite often this construction leads to
an interpolation space between E0 and E1 (that was the reason for Calderon to
introduce this construction in the beginning of 1960s). The interpolation property
is actually true for all the situations in our paper. Nevertheless, we do not need it.

We use the following result about mixed norm spaces and Calderon–Lozanovskii
construction (see [9]): for all BFS E0 and E1 when both conditions (B) and (C)
hold, and for every BFS F0 and F1 we have

F0[E0]1−s F1[E1]s = F 1−s
0 F s

1 [E1−s
0 Es

1]. (1.3)

Finally, for Lorentz spaces, we have that if p′ satisfies 1/p + 1/p′ = 1, then

�(ψ,p) = �(ψ)1/p (L∞)1/p′. (1.4)
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2. Some Inequalities in Classical Spaces

Within this section we assume that each of the measure spaces T1 and T2 is [0, 1]
with the Lebesgue measure. Extension to the case of continuous measure spaces
with probability measures is straightforward.

2.1. EASIER CASES

We start by considering several easier cases when one or both (L∞-MNP) and
(L1-MNP) inclusions hold. The proofs are elementary and included just for the
sake of completeness.

We begin with a simple observation that, for verifying (L∞-MNP) or (L1-MNP),
it is sufficient to check just for the set-theoretic inclusions:

L∞[E] ⊂ Ẽ or Ẽ ⊂ L1[E].
Indeed, identical inclusion operator is automatically bounded since inclusion is a
positive operator and the norm is monotone.

LEMMA 2.1 Let E be a RIS from Orlicz, Lorentz or Marcinkiwiecz class. If
(L∞-MNP) (resp. (L1-MNP)p) is true for E then (L1-MNP) (resp. (L∞-MNP))
is true for the BFS dual E′.

Proof. From [4] we get

(L∞[E])′ = L1[E′], (L1[E])′ = L∞[E′].
This proves the assertion. �
PROPOSITION 2.2 For the Orlicz space LM both conditions (L∞-MNP) and
(L1-MNP) hold.

Proof. Let us prove, say, that (L∞-MNP) holds. Let K(s, t) be a function such
that, for a.e. t ∈ T1,∫

T2

M

( |K(s, t)|
λ

)
dµ2(s) ≤ 1,

i.e. K ∈ L∞(T1)[LM]. Then, integrating in t , we get∫
T1

∫
T2

M

( |K(s, t)|
λ

)
dµ1(t)dµ2(s) ≤ 1.

Hence, ‖K‖LM(T ) ≤ λ. �
PROPOSITION 2.3 For the Marcinkiewicz space M(ψ,p) condition (L∞-MNP)
holds.
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Proof. Let A be a �-measurable set. As usual we set At = {s ∈ T2 : (s, t) ∈ A}.
Then, due to the Fubini-Tonelli theorem, we get

µ(A) =
∫
T1

µ2(At)dµ1(t). (2.5)

Let K ∈ L∞(T1)[M(ψ,p)], i.e.

sup



∫

B

|K(s, t)|pdµ2(s)

ψ(µ2(B))


1/p

: µ2(B) > 0

 ≤ C (2.6)

for a.e. t ∈ T1. If µ(A) > 0 we have(∫
A

|K(s, t)|pdµ(s, t)

)1/p

=
(∫

T1

(∫
A

|K(s, t)|pdµ2(s)

)
dµ1(t)

)1/p

=

=

∫
T1


∫

At

|K(s, t)|pdµ2(s)

ψ(µ2(At ))

ψ(µ2(At))dµ1(t)


1/p

and, using (2.6), the concavity of ψ , formula (2.5), and Jensen inequality, we
obtain:(∫

A

|K(s, t)|pdµ(s, t)

)1/p

≤
(∫

T1

Cpψ(µ2(At ))dµ1(t)

)1/p

=

= C

(∫
T1

ψ(µ2(At))dµ1(t)

)1/p

≤ C

[
ψ

(∫
T1

µ2(At )dµ1(t)

)]1/p

=
= Cψ(µ(A))1/p.

This proves that the norm of K in M(ψ,p) on T is less or equal C. �
COROLLARY 2.4 For the Lorentz space �(ψ) condition (L1-MNP) holds.

Proof. By Lemma 2.1 and Proposition 2.3 the space E = M(ψ) is as re-
quired. �

Now we would like to extend this result to the general case, when p > 1. In the
case of Lorentz spaces �(ψ,p) it is not possible to change the order of integration.
Though it is not the only possibility, we would like to show how the techniques
from subsection 1.4 work.

PROPOSITION 2.5 For the Lorentz space �(ψ,p), 1 ≤ p < ∞, condition
(L1-MNP) holds.
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Proof. From formulas (1.3) and (1.4), and Corollary 2.4 we derive:

�̃(ψ, p) = �(ψ,p)(T1 × T2) = (�(ψ)(T1 × T2))
1/p(L∞(T1 × T2))

1/p′

⊂ (L1(T1)[�(ψ)])1/p(L∞(T1)[L∞(T2)])1/p′

= (L1(T1))
1/p(L∞(T1))

1/p′([�(ψ)(T2)]1/p(L∞(T2))
1/p′)

= Lp(T1)[�(ψ,p)(T2)] ⊂ L1(T1)[�(ψ,p)(T2)]. �

2.2. LORENTZ CASE COUNTEREXAMPLES

Now we are ready to present our main result, where we show that, for Lorentz
spaces, inclusion (L∞-MNP) usually does not hold. We split our exposition in
two parts: in Subsection 2.3 we consider Lorentz spaces L(p, q) generated by the
power function ψ . In this case we prove that for all p > q condition (L∞-MNP) is
violated. Since p ≥ q that exhausts all possibilities.

Turning to the case of general functions ψ we start from the observation that
for some pathological pairs of a function ψ and a Young function M, we have that
the Lorentz space �(ψ,p) coincides with the Orlicz spaces LM (see, e.g., [33]). In
this case both inclusions, (L1-MNP) and (L∞-MNP), hold. So we have to impose
certain suitable conditions on ψ in order to construct counterexamples like in the
power case. This is done in Subsection 2.4. Those sufficient conditions are quite
general. Nevertheless, we do not know whether they are also necessary.

2.3. POWER CASE

THEOREM 2.6 In the Lorentz space �(tα, p) (0 < α < 1, 1 ≤ p < ∞)

(L∞-MNP) does not hold.
Proof. Since the embedding (L∞-MNP) is automatically continuous then it

suffices to construct a sequence Kn ∈ L∞(T1)[�(tα, p)] such that

‖Kn(·, t)‖�(tα,p) ≤ 1, ∀ n ∈ N,∀ t ∈ T1 (2.7)

and

lim
n→∞‖Kn‖�̃(tα,p)

= ∞. (2.8)

Fix n ∈ N. Let k be an integer that will be chosen later. It can actually depend
on n (as it is the case in Theorem 2.10, but we will see that it is not necessary
here). Let {B(n)

i }ni=1 be a partition of T1 such that µ1(B
n
i ) = 1

n
, i = 1, . . . , n, and

A
(n)
i = [0, 1

ki

]
be a subset of T2 we define

Kn(s, t) =
n∑

i=1

kiα/pχ
B

(n)
i

(t)χ
A

(n)
i
(s).
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For any h > 0 we have ‖hα/pχ[
0, 1

h

]‖�(tα,p) = 1. Hence, ‖Kn(·, t)‖�(tα,p) = 1 for

all t . That proves (2.7).
To get (2.8) we need to estimate ‖Kn‖�̃(tα,p)

from below. By direct calculation
of the norm we get:

‖Kn‖�̃(tα,p)
=
{∫ ∞

0

(
µ{(s, t) : Kp

n (s, t) > τ })α dτ

}1/p

≥

≥
 1

nα

n∑
i=2

(
kiα − k(i−1)α) n∑

j=i

1

kj

α1/p

.

Estimating the i-th term in the expression above we get:

(
kiα − k(i−1)α

) n∑
j=i

1

kj

α

≥ (kiα − k(i−1)α
) 1

kiα
= (1− k−α).

If we choose, for instance, k = 2 we have that

lim
n→∞‖Kn‖�̃(tα,p)

≥ lim
n→∞

(
1

nα
(n− 1)(1− 2−α)

)1/p

= +∞,

which implies (2.8). �
As a consequence of Theorem 2.6 and Proposition 1.8 we obtain the following

results:

PROPOSITION 2.7 For the Lorentz space L(p, q) the following relations hold:

L∞(T1)[L(p, q)] �⊂ L̃(p, q) ⊂ Lq(T1)[L(p, q)], q < p ;
L∞(T1)[L(p, q)] ⊂ Lq(T1)[L(p, q)] ⊂ L̃(p, q) �⊂ L1(T1)[L(p, q)], q > p ;
L∞(T1)[L(p, p)] ⊂ Lp(T1)[Lp] ⊂ L̃(p, p) = Lp = Lp(T1)[Lp] ⊂
⊂ Lq(T1)[L(p, p)] .

Proof. It follows from Theorem 2.6, Lemma 2.1 and Theorem 2.5. �
COROLLARY 2.8 For the Lorentz space L(p, q) condition (L∞-MNP) holds if
and only if p = q.

Proof. This is a consequence of Proposition 2.7. �
COROLLARY 2.9 There exists a reflexive RIS E such that E fails to have (L∞-MNP),
and E′ fails to have (L1-MNP)p.
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Proof. Due to Lemma 2.1 and Theorem 2.6 we can pose E = �(tα, p), 1 <

p <∞. �
From Lemma 2.1 and Proposition 2.6 we see that the classical Marcinkiewicz

space M(α) fails to have (L1-MNP) (though (L∞-MNP) holds).

2.4. GENERAL CASE

Now we want to expand our result to general �(ψ,p). The proof of Theorem
2.6 uses intensively multiplicativity property of the generating function ψ(t) =
tα . Thus a suitable modification of our approach is needed. As it was mentioned
before, it is impossible to obtain the result given in Theorem 2.6 for every ψ . So
we have to impose the following two conditions on ψ :

(ψ1)] limt→0
ψ(2t)

ψ(t)
= q < 2;

(ψ2)] limt→0
ψ(2t)

ψ(t)
= r > 1.

Both conditions hold for ψ(t) = tα because

lim
t→0

ψ(2t)

ψ(t)
= 2α

and 1 < 2α < 2. So conditions (ψ1) and (ψ2) form a natural generalization of the
power case.

THEOREM 2.10 If both conditions (ψ1) and (ψ2) hold then the Lorentz space
�(ψ,p) fails to have (L∞-MNP).

Proof. We will construct a sequence {Kn}, again satisfying (2.7) and (2.8), now
with ψ in place of tα .

Fix n ∈ N. Let k be an integer that will be chosen later. In our construction we
will adjust k accordingly with n. So, formally speaking, k = k(n). Nevertheless,
we prefer to omit n in the notation since there is no interdependence between k(n)

defined for different n. Let {B(n)
i }2n

i=1 be a partition of T1 such that µ1(B
(n)
i ) = 1

2n ,

i = 1, . . . , 2n, and A
(n)
i = [0, 1

kin
] be a subset of T2.

We define

Kn(s, t) =
2n∑
i=1

(
ψ

(
1

ki

))−1/p

χ
B

(n)
i

(t)χ
A

(n)
i
(s).

As before we obviously have ‖Kn(·, t)‖�(ψ,p) = 1 for every t ∈ T1, hence, (2.7)
is true. So, we need to proceed with the estimate, which is an analogue of (2.8).



SOME INEQUALITIES IN CLASSICAL SPACES WITH MIXED NORMS 405

We cannot use multiplicativity of ψ now, so our approach should be a bit more
sophisticated. We have as before:

‖Kn‖ ˜�(ψ,p)
=
(∫ ∞

0
ψ(µ{(s, t) : Kp

n (s, t) > τ })dτ
)1/p

≥

≥


2n∑
i=2

[(
ψ

(
1

ki

))−1

−
(
ψ

(
1

ki−1

))−1
]
ψ

 1

2n

2n∑
j=i

1

kj


1/p

. (2.9)

From (ψ1) and (ψ2) we obtain

(ψ ′
1) limt→0

ψ(2nt)

ψ(t)
≤ qn for every n ∈ N;

(ψ ′
2) limt→0

ψ(2nt)

ψ(t)
≥ rn for every n ∈ N.

Let σ, ρ be arbitrarily fixed (but independent of n) numbers such that 1 < ρ < r <

q < σ < 2. Using (ψ ′
1) and (ψ ′

2), we get

limt→0
ψ(2nt)

ψ(t)
< σn, limt→0

ψ(2nt)

ψ(t)
> ρn.

So, there exists δ = δ(n) such that for every t with 0 < t ≤ δ we have

σ−n <
ψ(t)

ψ(2nt)
< ρ−n. (2.10)

It is the right time to choose k = k(n). We impose the following two conditions:
(a) 1/k < δ;
(b) k > 2n.

Now we want to estimate the i-th term in formula (2.9):[(
ψ

(
1

ki

))−1

−
(
ψ

(
1

ki−1

))−1
]
ψ

 1

2n

2n∑
j=i

1

kj

 ≥

≥
[(

ψ

(
1

ki

))−1

−
(
ψ

(
1

ki−1

))−1
]
ψ

(
1

2nki

)
=

=
[(

ψ

(
1

ki

))−1

−
(
ψ

(
1

ki−1

))−1
] ψ

(
1

2nki

)
ψ

(
1

ki

) · ψ
(

1

ki

)
=

=

1−
ψ

(
1

ki

)
ψ

(
1

ki−1

)
 ψ

(
1

2nki

)
ψ

(
1

ki

) .
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From (b) we deduce that

ψ

(
1

ki

)
= ψ

(
1

kki−1

)
≤ ψ

(
1

2nki−1

)
.

Since
1

ki
<

1

k
< δ, we have by (a) and (2.10):1−

ψ

(
1

ki

)
ψ

(
1

ki−1

)
 ψ

(
1

2nki

)
ψ

(
1

ki

) ≥

1−
ψ

(
1

2nki−1

)
ψ

(
1

ki−1

)
σ−n ≥

≥ (1− ρ−n)σ−n.

Taking into account that 2/σ > 1 and ρ > 1, and passing to the limit as n → ∞,
we get

lim
n→∞‖Kn‖ ˜�(ψ,p)

≥

≥ lim
n→∞

 2n∑
i=2

[(
ψ

(
1

ki

))−1

−
(
ψ

(
1

ki−1

))−1
]
ψ

 1

2n

2n∑
j=i

1

kj

1/p

≥

≥ lim
n→∞

(
(2n − 1)σ−n[1− ρ−n])1/p = ∞. �

3. Appendix. Generalized Kolmogorov–Nagumo Theorem

Let F be a BFS on (T1, �1, µ1) and E be a BFS on (T2, �2, µ2). For a measurable
function K(s, t) in two variables we can construct mixed norms in the following
two ways:

‖K‖t,s = ‖‖K(s, t)‖E,s‖F,t ; (3.11)

‖K‖s,t = ‖‖K(s, t)‖F,t‖E,s . (3.12)

We assume that all operations in (3.11) and (3.12) are correctly defined. It is
obviously true for the case of ‘simple’ functions of the form

K(s, t) =
n∑

i=1

xi(s)fi(t) (xi ∈ E, fi ∈ F). (3.13)

As it was mentioned in Introduction, if E = Lp and F = Lp, we have

‖‖K(s, t)‖E,s‖F,t = ‖‖K(s, t)‖F,t‖E,s (3.14)

for any K.
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Theorems of Kolmogorov–Nagumo type claim that (3.14) is true just for this
trivial case. Actually from Kolmogorov [16] and Nagumo [30] about axiomatic
‘averages’ of functions it is not difficult to derive such a result for RIS on [0, 1]
(see [29]; the term of Kolmogorov–Nagumo theorem has been introduced in this
paper). In applications we mainly need not the precise (isometric) equality (3.14)
but validity of a similar equivalent norms conditions, namely,

c1‖‖K(s, t)‖F,s‖E,t ≤ ‖‖K(s, t)‖E,t‖F,s ≤ c2‖‖K(s, t)‖F,s‖E,t , (3.15)

where the constants c1, c2 > 0 do not depend on K. We will see that it does not
enlarge the list of spaces, which still reduces to Lp.
The techniques of Kolmogorov–Nagumo give no clue to this much more general
setting. Using more modern techniques of unconditional basic sequences Nielsen
([31]) was able to deal with the case when the BFS E and F have order continuous
norm (condition (A)). The most general form of Kolmogorov–Nagumo theorem
was derived, as far as we know, by Bukhvalov in [5] (without the proof it was
announced in [7, 8]), where no restrictions on E and F were imposed. Since the
proof was given in the framework of Banach lattices rather than BFS, it made
difficult to follow the proofs for those not in the area. So, it became obvious that it
is desirable to provide a reader with the modified proof, which directly works for
BFS. Here it is.

For a weight function w > 0 on T1 denote by Lp(wdµ1) the weighted Lp-space
(1 ≤ p ≤ ∞) with the norm

‖x‖p,w =


(∫

|x(t)|pw(t)dµ1(t)

)1/p

, 1 ≤ p <∞,

ess supt∈T1
|x(t)|w(t) , p = ∞.

Let us recall that a BFS E is an AM-space provided ‖|x1|∨|x2|‖ = max(‖x1‖, ‖x2‖).
If such space possesses properties (C) and (B) then E coincides with a weighted
L∞-space.

THEOREM 3.1 (Generalized Kolmogorov–Nagumo theorem) If for the BFS E

and F equivalence inequalities (3.15) hold for every function K of the form (3.13),
where the functions xi (respectively, fi) are pairwise disjoint, then there exists a
number p ∈ [1,∞] such that
(1) if p < ∞, then there are weights w1 and w2 such that the norm of the BFS E

is equivalent to the norm ‖ · ‖p,w1 and the norm of the BFS F is equivalent to
the norm ‖ · ‖p,w2 ; hence, E and F coincide with the corresponding weighted
Lp-spaces, with equivalent norms;

(2) if p = ∞, then E and F both have norms equivalent to the norms in AM-
spaces; if additionally E and F both possess properties (C) and (B) then these
spaces coincide with some weighted L∞-spaces, with equivalent norms.
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REMARK 3.2 An isometric variant of Theorem 3.1 holds, i.e. if (3.14) holds for
all the functions of the form (3.13), then we have equality of the norms rather than
equivalence. This is an easier result, which can be derived from the proof below.

In order to prove Theorem 3.1 we need the following two results. The first
result is a deep Theorem A due to Krivine [17] about finite lattice representabil-
ity of a suitable lp in an arbitrary Banach lattice. The second result is a general
characterization of Lp-spaces in the class of BFS (Banach lattices).

THEOREM A (Krivine [17]). Let E be an arbitrary infinite-dimensional Banach
lattice (e.g., BFS). Then there is a number p ∈ (1,∞] such that for any ε >

0 and for any natural number n there exists a set of pairwise disjoint norm one
elements x1, x2, . . . , xn ∈ E+, which for any set of scalars λ1, λ2, . . . , λn satisfies
the following inequalities:

(1− ε)

(
n∑

i=1

|λi|p
)1/p

≤
∥∥∥∥∥

n∑
i=1

λixi

∥∥∥∥∥ ≤ (1+ ε)

(
n∑

i=1

|λi |p
)1/p

. (3.16)

When p = ∞ we mean usual modification.

THEOREM B. (i) The norm in a BFS E is equivalent to a ‖ · ‖p,w-norm for some
p ∈ [1,∞) if and only if there exist constants c1, c2 > 0 such that

c1

(
n∑

i=1

‖xi‖p
)1/p

≤
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ ≤ c2

(
n∑

i=1

‖xi‖p
)1/p

(3.17)

for any pairwise disjoint x1, x2, . . . , xn ∈ E+.
(ii) The norm in a BFS E is equivalent to the norm of an AM-space if and only if
there exists a constant c > 0 such that∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ ≤ c max
i=1..n

‖xi‖ (3.18)

for any pairwise disjoint x1, x2, . . . , xn ∈ E+.

Assertion (i) is due to Mayer-Nieberg [26] and assertion (ii) is exactly Theorem 5
by Abramovich [1].

Proof of Theorem 3.1. Let p ∈ [1,∞] be a number, which corresponds to the
BFS F in accordance with Theorem A. We will prove that for this p either (3.17)
or (3.18) holds for E. This implies that, due to Theorem B, E is isomorphic to a
weighted Lp-space.

To simplify the notations, let 1 ≤ p < ∞ (the case of p = ∞ is just easier).
Take arbitrary pairwise disjoint elements x1, x2, . . . , xn ∈ E+. Using the asser-
tion of Theorem A we find, for the given n, a set of pairwise disjoint elements
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f1, f2, . . . , fn ∈ F+ with norm one, satisfying (3.16). Now construct K(s, t) in
accordance to formula (3.13) using those {xi} and {fi}. The disjointness conditions
imply that

‖K‖t,s =
∥∥∥∥∥

n∑
i=1

∥∥∥∥∥fi‖F xi‖E, ‖K‖s,t =
∥∥∥∥∥

n∑
i=1

∥∥∥∥∥ xi‖E fi‖F .

Taking into account formulas (3.15) and (3.16) together with ‖fi‖ = 1 we get∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
E

≤ 1

c1

∥∥∥∥∥
n∑

i=1

∥∥∥∥∥ xi‖E fi‖F ≤ 1+ ε

c1

(
n∑

i=1

‖xi‖p
)1/p

;
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥
E

≥ 1

c2

∥∥∥∥∥
n∑

i=1

∥∥∥∥∥ xi‖E fi‖F ≥ 1− ε

c2

(
n∑

i=1

‖xi‖p
)1/p

.

This implies that (3.17) is true for E and, hence, the norm ‖ · ‖E is equivalent to
‖ · ‖p,w1 .

Verifying that (3.17) is true for F with the same p is analogous to the above
with the only difference that we do not need rely on Theorem A this time. �

One of the principal consequences of Theorem 3.1 is impossibility of splitting
of any RIS of many variables (different from Lp) into a mixed norm space of co-
ordinate variables. This implies specific features of embedding and trace theorems
for Sobolev and Besov spaces generated by non Lp-metrics. Such theorems were
obtained in [8, 10]. Being precise we can formulate the following corollary.

COROLLARY 3.3 Let G be a RIS on T = T2 ×T1, which is different from Lp (as
a set). Assume that T1 and T2 are not reduced to finite number of atoms. Then there
are no BFS F on T1 and E on T2 such that G = F [E].

Proof. The space F [E], where at least one of spaces E or F are different from
Lp, can not be a RIS since in accordance to Theorem 3.1 such space cannot be
invariant with respect to the mapping (s, t)→ (t, s), which is an automorphism of
T . �
REMARK 3.4 (i) In [5] a number of related results have been derived. Among
them there is a deeper investigation of the case of AM-spaces. Other generaliza-
tions and corollaries include the results on equivalence of l- and m-norms in tensor
products and spaces of operators (see the definitions in [35]). Some applications to
duality of operators with abstract norm (in the sense of Kantorovich, see [15]) are
given as well.
(ii) In [6] Theorem 3.1 is applied to description of averages of measurable families
of convex bodies in Rn (cf. [12]).
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