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Abstract

We introduce the GHk integral for functions defined on (possibly) un-
bounded subintervals of the extended real line and with values in metric
semigroups. Basic properties and convergence theorems for this integral
are deduced.
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1 Introduction.

Stieltjes-type integrals are widely studied in the literature: for example, mean-
ingful results can be found in [8, 9, 10, 23]. In particular, in [13, 14, 15] and
in a more abstract setting in [8, 9], an integral (GHk integral) for real-valued
functions defined in a compact subinterval of the real line has been investi-
gated, which generalizes the integral studied by Š. Schwabik in [24]: the latter
includes also the classical Kurzweil-Henstock and Henstock-Stieltjes integrals.
Some examples of other particular cases of the GHk integral are illustrated in
[8, 9].

In this paper we extend the GHk integral to the case of metric semigroup-
valued functions, defined on (possibly) unbounded subintervals of the extended
real line, and we prove some convergence theorems. Similar results were proved
in [5] in the context of the Kurzweil-Henstock integral, for which the GHk

integral is substantially a particular case; moreover, in this paper we prove also
an extension Cauchy-type theorem.

For a literature existing on the Kurzweil-Henstock integral in the context of
metric semigroups, we refer to [5, 16, 26] and their bibliography, while for Riesz-
space valued functions we recall [1, 2, 3, 4, 17, 18, 19, 20, 21, 22]. A particular
example of metric semigroup is the set L(R) of fuzzy numbers (see also Section
2 and [5]).

2 Metric semigroups.

Definition 2.1. A metric semigroup is a structure (X, ρ,+, ·), where ρ : X ×
X → R, + : X ×X → X, · : R×X → X satisfy the following conditions:

(i) (X, ρ) is a complete metric space;

(ii) (X,+) is a commutative semigroup endowed with a neutral element 0;

(iii) ρ(w + y, z + t) ≤ ρ(w, z) + ρ(y, t) for any w, y, z, t ∈ X;

(iv) ρ(αw,α y) ≤ |α| ρ(w, y) for all α ∈ R and w, y ∈ X;

(v) α(w + y) = αw + αy for each α ∈ R, w, y ∈ X;

(vi) (α+ β)w = αw + βw for every α, β ∈ R+
0 , w ∈ X, 0 ·w = 0 and 1 ·w = w

for each w ∈ X.

A metric semigroup (X, ρ,+, ·) is called invariant, if

ρ(w + z, y + z) = ρ(w, y)

for any w, y, z ∈ X.

Observe that a consequence of invariance and the triangular property is the
following condition, which will be useful in the sequel:
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(vii) ρ(w + y, z) ≤ ρ(w, t) + ρ(y + t, z) whenever x, y, z, t ∈ X.

An example of metric semigroup is the set of all fuzzy numbers (see also [5, 26]).

Definition 2.2. A fuzzy number is a function µ : R → [0, 1] satisfying the
following conditions:

(j) there exists x0 ∈ R such that µ(x0) = 1;

(jj) the α-cut set µα = {x ∈ R : µ(x) ≥ α} is convex for α ∈]0, 1];

(jjj) µ is upper semi-continuous, i. e. any α-cut µα is a closed subset of R;

(jv) the support {x ∈ R : µ(x) > 0} of the function µ is a compact set.

Any real number u0 can be identified with a fuzzy number µ0 in the following
way:

µ0(x) = χ{u0}(x),

i. e. µ0(u0) = 1, and µ0(x) = 0, if x 6= u0.
The set of all fuzzy numbers is denoted by L(R).

We now endow L(R) with a metric and a linear structure (see also [5, 26]).
We define the Hausdorff distance H on the set of all compact possibly degenerate
intervals in R:

H([a, b], [c, d]) = max(|c− a|, |d− b|).

Let µ, ν ∈ L(R). It is easy to check that, for every α ∈ (0, 1], there exist a, b, c,
d ∈ R (depending on α) such that µα = [a, b], να = [c, d]. So, for µ, ν ∈ L(R),
set

ρ(µ, ν) = sup{H(µα, να) : α ∈ (0, 1]}.

Using this definition, (L(R), ρ) becomes a complete metric space.

To define a linear structure on L(R), recall that every fuzzy number is com-
pletely determined by its α-cuts. Hence, for any µ, ν ∈ L(R), α ∈ R+ and
λ ∈ R, set

(µ+ ν)α = µα + να,

(λµ)α = λµα

(here, V + Z = {v + z : v ∈ V, z ∈ Z}; λV = {λ v : v ∈ V }).

Finally, we note that (L(R),+) is not a group, but only a semigroup (see
also [5]), in fact let µ ∈ L(R) be defined by the formula:

µ(x) =

 x, if x ∈ [0, 1];
2− x, if x ∈ [1, 2];
0, otherwise.
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Then −µ = (−1) · µ is given by

−µ(x) =

 −x, if x ∈ [−1, 0];
2 + x, if x ∈ [−2,−1];
0, otherwise.

Note that µ(x) + (−µ(x)) is not the zero element 0 ≡ χ{0}(x), but

µ(x) + (−µ(x)) =



1− x

2
, if x ∈ [0, 2];

1 +
x

2
, if x ∈ [−2, 0];

0, otherwise.

On the other hand the subset R0 ⊂ L(R) consisting of all functions χ{a}, a ∈ R,
is group isomorphic to the commutative group (R,+).

3 The construction of the integral.

From now on we denote by capital letters the elements of the extended real line
and by small letters the real numbers. Let [A,B] be a (possibly unbounded)
interval of the extended real line, and F be the family of all closed convex
subsets. By partition (or k-partition ) of a set W ∈ F we denote a finite
collection

Π = {(ξ1;F1,1, . . . , F1,k), . . . , (ξq;Fq,1, . . . , Fq,k)} = {(ξ1;E1), . . . , (ξq;Eq)} (1)

such that

(i) Fi,j ∈ F for all i = 1, . . . , q and j = 1, . . . , k;

(ii)
k⋃
j=1

Fi,j = Ei for all i = 1, . . . , q;

(iii)
q⋃
i=1

Ei = W ;

(iv) ξi ∈ Ei (i = 1, . . . , q);

(v) the Fi,j ’s are pairwise non-overlapping;

(vi) sup Fi,j = inf Fi,j+1 whenever i = 1, . . . , q and j = 1, . . . , k − 1.

A finite collection Π as in (1), satisfying conditions (i), (ii), (iv), (v) and (vi),
but not necessarily (iii), is said to be a decomposition (or k-decomposition ) of
W .
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Definitions 3.1. • A gauge is a map γ defined in [A,B] and taking values
in the set of all open intervals in R̃, such that ξ ∈ γ(ξ) for every ξ ∈ [A,B]
and γ(ξ) is a bounded open interval (with respect to the topology of [A,B])
for every ξ ∈ R ∩ [A,B].

• Given a gauge γ, a k-decomposition of [A,B] of the type

Π = {(ξi;Ei), i = 1, . . . , q} (2)

is said to be γ-fine if ξi ∈ Ei ⊂ γ(ξi) for all i = 1, . . . , q. Observe that for
any gauge γ there always exists a γ-fine k-partition (see also [8, 11]).

• Given [a, b] ⊂ R and a map δ : [a, b]→ R+, a partition Π of [a, b] as in (2)
is said to be δ-fine if ξi ∈ Ei ⊂ (ξi − δ(ξi), ξi + δ(ξi)) for all i = 1, . . . , q.
In any case we note that, if Ei is an unbounded interval, then the element
ξi associated with Ei is necessarily +∞ or −∞: otherwise γ(ξi) should be
a bounded interval and contain an unbounded interval, a contradiction.

From now on, we assume that X is an invariant metric semigroup. Given
any k-decomposition Π as in (1) and a function U : [A,B] × Fk → X, we call
Riemann sum of U (and we write

∑
Π

U) the expression

q∑
i=1

U(ξi;Fi,1, . . . , Fi,k). (3)

We now introduce theGHk integral forX-valued functions defined on [A,B]×
Fk. We will show that this concept can be formulated equivalently both with
gauges and with positive maps δ.

Definition 3.2. We say that a function U : [A,B]×Fk → X is GHk integrable
on [A,B] if there exists I ∈ X such that for all ε > 0 there correspond a function
δ : [A,B]→ R+ and a positive real number P such that

ρ

(
I,
∑
Π

U

)
≤ ε (4)

whenever Π is a δ-fine k-partition of any bounded interval [a, b] with [a, b] ⊃
[A,B] ∩ [−P, P ]. In this case we say that I is the GHk integral of U , and

we denote the element I by the symbol (GHk)
∫ B

A

U , writing usually U ∈

GHk[A,B].

Analogously it is possible to define the integral (GHk)
∫ d

c

U for each subin-

terval [c, d] ⊂ [A,B].

Remark 3.3. We note that the GHk integral is well-defined, that is there exists
at most one element I, satisfying condition (4) (see also [5]).
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We now give the following characterization of GHk integrability.

Theorem 3.4. A function U : [A,B]×Fk → X is GHk integrable if and only
if there is J ∈ X such that for all ε > 0 there exists a gauge γ such that

ρ

(
J,
∑
Π

U

)
≤ ε (5)

whenever Π is a γ-fine partition of [A,B], and in this case we have
∫ B

A

f = J .

Proof: See also [3], Theorem 3.3., and [5]. �

4 Elementary properties of the GHk integral

The proof of the following proposition is similar to the corresponding one in [5].

Proposition 4.1. If U1, U2 ∈ GHk[A,B] and c1, c2 ∈ R, then c1U1 + c2U2 ∈
GHk[A,B], and

(GHk)
∫ B

A

(c1 U1 + c2 U2) = c1 (GHk)
∫ B

A

U1 + c2 (GHk)
∫ B

A

U2.

(Here we intend by −U the entity (−1) · U)

Theorem 4.2. A map U : [A,B] × Fk → X is GHk integrable if and only if
for all ε > 0 there exists a gauge γ = γ(ε) on [A,B] such that

ρ

(∑
Π

U,
∑
Π′

U

)
≤ ε (6)

whenever Π, Π′ are γ-fine k-partitions of [A,B].

Proof: We follow the lines of the proof of Proposition 3.5 of [5].
The necessary part is straightforward.
We now turn to the sufficient part. Let U satisfy (6), and set ε = 1/n, with

n ∈ N. Then for all n there exists a gauge γn on [A,B] such that

ρ

(∑
Π1

U,
∑
Π2

U

)
≤ 1
n

whenever Π1, Π2 are γn-fine partitions of [A,B]. Put ηn = γ1 ∩ γ2 ∩ . . .∩ γn for
all n ∈ N, and set

An = {x ∈ X : ∃ ηn−fine partition Π1 : x =
∑
Π1

U}, n ∈ N.
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If x, y ∈ An, then ρ(x, y) ≤ 1/n, and hence

diamAn = diamAn ≤
1
n
.

Since ηn+1 ⊂ ηn, we obtain An+1 ⊂ An. Since X is complete, there exists
exactly one element I ∈ ∩∞n=1An.

Pick arbitrarily ε > 0, and choose n ∈ N such that
1
n
< ε. If Π is any ηn-fine

partition, then ∑
Π

U ∈ An.

Since I ∈ An, we obtain

ρ

(
I,
∑
Π

U

)
≤ 1
n
< ε.

Therefore U is GHk integrable on [A,B] and I =
∫ B

A

U . �

We now investigate GHk integrability on subintervals, by proceeding simi-
larly as in [8].

Proposition 4.3. If U ∈ GHk[A,B], then U ∈ GHk[c, d] for each [c, d] ⊂
[A,B], and

(GHk)
∫ B

A

U = (GHk)
∫ c

A

U + (GHk)
∫ B

c

U

whenever A < c < B.

Proof: We begin with the first statement. Without loss of generality, we can
assume that [c, d] = [A, d], with A < d < B. Let γ be any gauge on [A,B], pick
any two γ-fine k-partitions Π1, Π2 of [A, d], and let Π′ be a γ-fine k-partition
of [d,B]. Such a partition does exist, by virtue of the Cousin lemma. Then, for
j = 1, 2, Π′′j := Π′ ∪Πj is a γ-fine partition of [A,B]. Since

ρ

(∑
Π1

U,
∑
Π2

U

)
= ρ

∑
Π′′1

U,
∑
Π′′2

U

 ,

then the assertion follows from the Cauchy criterion.
We now turn to the last part. For every ε > 0 there exists a gauge γ such

that for each γ-fine k-partition Π1 of [A, c] and Π2 of [c,B] we get

ρ

(∑
Π1

U, (GHk)
∫ c

A

U

)
≤ ε, ρ

(∑
Π2

U, (GHk)
∫ B

c

U

)
≤ ε.

Hence, if Π = Π1 ∪Π2, we have also

ρ

(∑
Π

U, (GHk)
∫ B

A

U

)
≤ ε.
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We obtain:

0 ≤ ρ

(
(GHk)

∫ c

A

U + (GHk)
∫ B

c

U, (GHk)
∫ B

A

U

)

≤ ρ

(∑
Π1

U, (GHk)
∫ c

A

U

)
+ ρ

(∑
Π2

U, (GHk)
∫ B

c

U

)
+ ρ

(∑
Π

U, (GHk)
∫ B

A

U

)
≤ 3 ε.

By arbitrariness of ε ∈ R+ we get that

(GHk)
∫ B

A

U = (GHk)
∫ c

A

U + (GHk)
∫ B

c

U.

This completes the proof. �
In order to establish a converse of the previous result, we now introduce the

following property.

Definition 4.4. Let U : [A,B]× Fk → X and fix a point x0 ∈ [A,B]. We say
that U satisfies condition

[H1) at x0] if for all ε > 0 there exists a positive real number η = η(ε;x0)
such that

ρ
(
U(x0; [w(0)

0 , w
(0)
1 ], . . . , [w(0)

k−1, w
(0)
k ]), U(x0; [w(1)

0 , w
(1)
1 ], . . . , [w(1)

k−1, w
(1)
k ])

+ U(x0; [w(2)
0 , w

(2)
1 ], . . . , [w(2)

k−1, w
(2)
k ])

)
≤ ε

whenever
2⋃
l=0

(
k⋃
i=1

[w(l)
i−1, w

(l)
i ]

)
⊂]x0 − η, x0 + η[ and w

(0)
0 = w

(1)
0 , w(0)

k =

w
(2)
k , x0 = w

(1)
k = w

(2)
0 .

Note that H1) is a kind of ”quasi-additivity” of the set function U . In
many cases, when X = R, U is defined by means of suitable ”differences” (for
example, U(t; [u, v]) = V (t; v)− V (t;u) when k = 1 or

U(t; [w0, w1], . . . , [wk−1, wk]) = V (t;w1, . . . , wk)− V (t;w0, . . . , wk−1)

for k ≥ 2); then, if k = 1, property H1) is automatically satisfied (see also
[24], Theorem 1.11, pp. 10-12); while for k ≥ 2 it is implied by the condition
of ”existence of the iterated limit J” used by A. G. Das and S. Kundu (see [8],
Definition 2.9., p. 69).

We now prove the following result on additivity.

Theorem 4.5. Let U : [A,B]×Fk → X satisfy condition H1) at c ∈]A,B[. If
U ∈ GHk[A, c] and U ∈ GHk[c,B], then U ∈ GHk[A,B] and

(GHk)
∫ B

A

U = (GHk)
∫ c

A

U + (GHk)
∫ B

c

U.
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Proof: By hypothesis, for every ε > 0 there exist a function δ∗ : [A,B] →
R+ and a positive real number P (without loss of generality, greater than |c|)
with the following property: for all δ∗-fine k-partitions Π1 of any bounded
interval [a1, b1] ⊂ [A, c], [a1, b1] ⊃ [A, c] ∩ [−P, P ] and Π2 of every bounded
interval [a2, b2] ⊂ [c,B], [a2, b2] ⊃ [c,B] ∩ [−P, P ] we get

ρ

(∑
Π1

U, (GHk)
∫ c

A

U

)
≤ ε, ρ

(∑
Π2

U, (GHk)
∫ B

c

U

)
≤ ε.

Let η = η(ε; c) be related to condition H1) at c, and set δ(x) = min{δ∗(x), |x−
c|} if x ∈ [A,B] \ {c}, δ(c) = min{δ∗(c), η}. Pick now any bounded interval
[a, b] ⊂ [A,B], [a, b] ⊃ [A,B] ∩ [−P, P ], and any δ-fine k-partition

Π = {(ξi;Fi,1, . . . , Fi,k), i = 1, . . . , q}

of [a, b]. There exists m with 1 ≤ m ≤ q, such that c = ξm and
k⋃
j=1

Fi,j contains

c if and only if i = m (see also [8, 24]). We get:

∑
Π

U =
m−1∑
i=1

U(ξi;Fi,1, . . . , Fi,k) + U(c;Fm,1, . . . , Fm,k) +
q∑

i=m+1

U(ξi;Fi,1, . . . , Fi,k).

Consider now the points

c−δ(c) < xm−1,k = ym,0 < . . . < ym,k = c = zm,0 < . . . < zm,k = xm+1,0 < c+δ(c).

The parts of the partition Π for i = 1, . . . ,m−1 (i = m+1, . . . , q) and the single
family {(c; [ym,0, ym,1], . . . , [ym,k−1, ym,k])} ({(c; [zm,0, zm,1], . . . , [zm,k−1, zm,k])})
form a δ∗-fine k-partition Π1 (Π2) of [a, c] ([c, b]). So, we have:

ρ

(∑
Π

U, (GHk)
∫ c

A

U + (GHk)
∫ B

c

U

)

≤ ρ

(∑
Π1

U, (GHk)
∫ c

A

U

)
+ ρ

(∑
Π2

U, (GHk)
∫ B

c

U

)
+ ρ

(∑
Π

U,
∑
Π1

U +
∑
Π2

U

)
≤ 2 ε+ ρ(U(c;Fm,1, . . . , Fm,k), U(c; [ym,0, ym,1], . . . , [ym,k−1, ym,k])
+ U(c; [zm,0, zm,1], . . . , [zm,k−1, zm,k])) ≤ 3 ε.

From this it follows that U ∈ GHk[A,B] and

(GHk)
∫ B

A

U = (GHk)
∫ c

A

U + (GHk)
∫ B

c

U.

This concludes the proof. �
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5 Convergence theorems

We begin with a version of the Saks-Henstock lemma (see also [5], Proposition
4.1). Here, the symbol | · | denotes the Lebesgue measure.

Lemma 5.1. Let U : [A,B] × Fk → X be GHk integrable on [A,B]. Then
for every ε > 0 there exists a gauge γ on [A,B] such that, for every γ-fine
k-decomposition of [A,B]

Π = {(ti;Fi,1, . . . , Fi,k), i = 1, . . . ,m} = {(ti;Ei), i = 1, . . . ,m}, (7)

where
k⋃
j=1

Fi,j = Ei, i = 1, . . . ,m, we have

ρ

 ∑
i=1,...,m,|Ei|<+∞

U(ti;Fi,1, . . . , Fi,k),
m∑
i=1

(GHk)
∫
Ei

U

 ≤ ε.

Proof: (see also [5]) Choose arbitrarily ε > 0, and let γ be a gauge on [A,B]
existing in correspondence with ε, according to Theorem 3.4. Fix arbitrarily any
γ-fine k-decomposition Π of [A,B] as in (7), and let intEi be the interior of Ei,
i = 1, . . . ,m. Since the Ei’s are non-overlapping, the set [A,B] \ ∪mi=1(intEi)
is empty or is the union of non-overlapping (possibly bounded or not) intervals
B1, . . . , Bp. Let η > 0. Since U is GHk integrable on each Bj , for each j =
1, . . . , p there exists a gauge γj on Bj such that γj(x) ⊂ γ(x) for all x ∈ Bj and

ρ

∑
Πj

U, (GHk)
∫
Bj

U

 <
η

p+ 1

for every γj-fine partition Πj of Bj . Let now Πj be such a partition. We observe
that

Π := {(ti;Fi,1, . . . , Fi,k), i = 1, . . . ,m} ∪ (∪pj=1 Πj)
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is a γ-fine partition of [A,B]. Then we have:

ρ

 ∑
i=1,...,m,|Ei|<+∞

U(ti;Fi,1, . . . , Fi,k),
m∑
i=1

(GHk)
∫
Ei

U


= ρ

 ∑
i=1,...,m,|Ei|<+∞

U(ti;Fi,1, . . . , Fi,k) +
p∑
j=1

∑
Πj

U,

m∑
i=1

(GHk)
∫
Ei

U +
p∑
j=1

∑
Πj

U


≤ ρ

(∑
Π

U, (GHk)
∫ B

A

U

)

+ ρ

 m∑
i=1

(GHk)
∫
Ei

U +
p∑
j=1

(GHk)
∫
Bj

U,

m∑
i=1

(GHk)
∫
Ei

U +
p∑
j=1

∑
Πj

U


≤ ε+ ρ

 p∑
j=1

(GHk)
∫
Bj

U,

p∑
j=1

∑
Πj

U


≤ ε+

p∑
j=1

ρ

(GHk)
∫
Bj

U,
∑
Πj

U

 < ε+
p∑
j=1

η

p+ 1
< ε+ η.

Since the inequality

ρ

 ∑
i=1,...,m,|Ei|<+∞

U(ti;Fi,1, . . . , Fi,k),
m∑
i=1

(GHk)
∫
Ei

U

 < ε+ η

holds for any η > 0, then the assertion follows by arbitrariness of η. �
We now prove a version of a Hake’s type theorem, which is an extension of

the Cauchy theorem. To do this, let U : [A,B]×Fk → X be with U ∈ GHk[A, c]
for all c ∈ [A,B[, fix I ∈ X and let us introduce the following condition:

• H2) for every ε > 0 there exists a left neighborhood U of B such that

ρ

(
I, (GHk)

∫ c

A

U + U(B;F1, . . . , Fk)
)
≤ ε

whenever F1, . . . , Fk ∈ F are pairwise non-overlapping and such that U 3
c ≤ inf F1 ≤ supFj = inf Fj+1, j = 1, . . . , k − 1, and supFk = B.

In the literature several situations are considered, when, in the Riemann sums,
only the terms where the involved intervals are bounded are taken: this can be
done simply by postulating it or by requiring the condition

U(±∞; Λ1, . . . ,Λk) = 0 (8)

for every choice of Λj ∈ F , j = 1, . . . , k).
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Observe that, when B = +∞ and we require (8), H2) can be automatically
replaced by the simpler condition of existence in X of the limit

lim
c→B−

(GHk)
∫ c

A

U. (9)

Finally, we note that, when X = R, property H2) is implied by the two con-
ditions of existence in R of the limit as in (9) and of ”existence of the iterated
limit (from the left) J−” used by A. G. Das and S. Kundu (see [8]) when k ≥ 2.
For k = 1, H2) is equivalent to the existence in R of the limit in [24], formula
(1.11), p. 15.

Theorem 5.2. Let A ∈ R+, U : [A,B]× Fk → X be such that U ∈ GHk[A, c]
for every c ∈ [A,B[, and suppose that there is an element I ∈ X such that H2)
holds.

Then U ∈ GHk[A,B] and (GHk)
∫ B

A

U = I.

Moreover, if U ∈ GHk[A,B], then lim
c→B−

(GHk)
∫ c

A

U = (GHk)
∫ B

A

U (this last

result is independent on H2) ).

Proof: Let (cp)p be a strictly increasing sequence in [A, b[ with cp ↑ B and
c0 = A. For every p ∈ N and ε > 0 there exists a gauge γp : [A, cp]→ R+, such
that

ρ

∑
Πp

U, (GHk)
∫ cp

A

U

 ≤ ε

2p
(10)

whenever Πp is any γp-fine k-partition of [A, cp].
For every ξ ∈ [A,B[ there exists exactly one p = p(ξ) ∈ N such that ξ ∈

[cp(ξ)−1, cp(ξ)[. Given ξ ∈ [A,B[, choose γ̂(ξ) > 0 such that γ̂(ξ) ⊂ γp(ξ)(ξ) and
γ̂(ξ) ∩ [A,B[⊂ [A, cp(ξ)(ξ)). Let c ∈ [A,B[ and

Π̂ := {(ξi;Fi,1, . . . , Fi,k), i = 1, . . . , n} = {(ξi;Ei), i = 1, . . . , n},

with
k⋃
j=1

Fi,j = Ei, i = 1, . . . , n, be a γ̂-fine k-partition of [A, c]. For every

i = 1, . . . , n we get:
Ei ⊂ γ̂(ξi) ⊂ [A, cp(ξi)].

Furthermore, Ei ⊂ γp(ξi)(ξi). For every p ∈ N, let us indicate by∑
i=1,...,n, p(ξi)=p

ρ

(
U(ξi;Fi,1, . . . , Fi,k), (GHk)

∫
Ei

U

)
the sum of those terms of

n∑
i=1

ρ

(
U(ξi;Fi,1, . . . , Fi,k), (GHk)

∫
Ei

U

)
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for which ξi ∈ [cp−1, cp[. By Lemma 5.1 we obtain

ρ

 ∑
i=1,...,n, p(ξi)=p

U(ξi;Fi,1, . . . , Fi,k),
∑

i=1,...,n, p(ξi)=p

(GHk)
∫
Ei

U

 ≤ ε

2p

for all p ∈ N. Since U ∈ GHk[A, c] for every c ∈]A,B], then by Proposition 4.3
we have

(GHk)
∫ c

A

U =
n∑
i=1

(GHk)
∫
Ei

U.

So we get:

ρ

(
n∑
i=1

U(ξi;Fi,1, . . . , Fi,k), (GHk)
∫ c

A

U

)

= ρ

(
n∑
i=1

U(ξi;Fi,1, . . . , Fi,k),
n∑
i=1

(GHk)
∫
Ei

U

)

≤
∞∑
p=1

ρ
 ∑
i=1,...,n, p(ξi)=p

U(ξi;Fi,1, . . . , Fi,k),
∑

i=1,...,n, p(ξi)=p

(GHk)
∫
Ei

U


≤

∞∑
p=1

ε

2p
= ε.

Let U be related with condition H2), and pick a gauge γ on [A,B] such that
γ(ξ) ⊂ γ̂(ξ) if ξ ∈ [A,B[, and γ(B) ⊂ U . Let

Π := {(ξi;Fi,1, . . . , Fi,k), i = 1, . . . , n} = {(ξi;Ei), i = 1, . . . , n}

be any arbitrary γ-fine k-partition of [A,B], where
k⋃
j=1

Fi,j = Ei and Ei =

[xi−1,k, xi,k], i = 1, . . . , n: we get xn,k = B and hence ξn = B (if not, then
En ⊂ γ̂(ξn) ⊂ [A, cp(ξn)] and thus xn,k < B, a contradiction). We have, thanks
to the condition formulated in the hypothesis and using property (vii) of the
function ρ,

ρ

(
I,
∑
Π

U

)
≤ ρ

(
I,

n−1∑
i=1

U(ξi;Fi,1, . . . , Fi,k) + U(B;Fn,1, . . . , Fn,k)

)

≤ ρ

(
n−1∑
i=1

U(ξi;Fi,1, . . . , Fi,k), (GHk)
∫ xn−1,k

A

U

)

+ ρ

(
I, (GHk)

∫ xn−1,k

A

U + U(B;Fn,1, . . . , Fn,k)
)

≤ ρ

(
n−1∑
i=1

U(ξi;Fi,1, . . . , Fi,k), (GHk)
∫ xn−1,k

A

U

)
+ ε.



52 A. Boccuto, D. Candeloro and A. R. Sambucini

As xn−1,k < B and {(ξi;Fi,1, . . . , Fi,k), i = 1, . . . , n − 1} is a γ̂-fine k-partition
of [A, xn−1,k], we get

ρ

(
n−1∑
i=1

U(ξi;Fi,1, . . . , Fi,k), (GHk)
∫ xn−1,k

A

U

)
≤ ε,

and hence

ρ

(
I,
∑
Π

U

)
≤ 2ε.

From this the assertion of the first part of the theorem follows.
We now turn to the last part. Since, by hypothesis, U : [A,B] × Fk → X

is GHk integrable on [A,B], then U is GHk integrable on [A, c] for every A <
c ≤ B. So for all ε > 0 and c ∈]A,B] there exists δc1 : [A, c]→ R+ such that for
every δc1-fine k-partition Π′ of [A, c] we get:

ρ

(∑
Π′

U, (GHk)
∫ c

A

U

)
≤ ε.

Moreover, by GHk integrability on [A,B] (see also Definition 3.2), for any ε > 0
there exist δ : [A,B]→ R+ and P ∈]A,B[ such that for every bounded interval
[d1, d2] ⊂ [A,B] with [d1, d2] ⊃ [−P, P ] and for each δ-fine k-partition Π of
[d1, d2] we have

ρ

(∑
Π

U, (GHk)
∫ B

A

U

)
≤ ε.

Let now ε > 0, c > P , δc2(x) := min{δ(x), δc1(x)}, x ∈ [A, c], and Π be any
δc2-fine k-partition of [A, c]. Then we get:

ρ

(
(GHk)

∫ c

A

U, (GHk)
∫ B

A

U

)
≤ ρ

(∑
Π

U, (GHk)
∫ c

A

U

)
+

(∑
Π

U, (GHk)
∫ B

A

U

)
≤ 2ε.

Thus the theorem is completely proved. �

Remark 5.3. An analogous version of Theorem 5.2 holds, if we consider, in
our ”limit operations” and calculus, the point A from the right instead of the
point B from the left.

This concept will be useful in the sequel.

Definition 5.4. A sequence of integrable functions (Uh : [A,B]×Fk → X)h is
said to be equiintegrable if for any ε > 0 there exists a gauge γ on [A,B] such
that

ρ

(∑
Π

Uh, (GHk)
∫ B

A

Uh

)
≤ ε

for any γ-fine partition Π and every h ∈ N.
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We now prove the following convergence theorems for the GHk integral in
the context of metric semigroups.

Theorem 5.5. Let (Uh)h be an equiintegrable sequence and let

lim
h→+∞

ρ(Uh(t; Λ1, . . . ,Λk), U(t; Λ1, . . . ,Λk)) = 0

for any t ∈ [A,B] and uniformly with respect to Λ1, . . . ,Λk ∈ F . Then U is
GHk integrable on [A,B], and

lim
h→+∞

ρ

(
(GHk)

∫ B

A

Uh, (GHk)
∫ B

A

U

)
= 0.

Proof: First of all, we observe that for each ε > 0, there exist: a non-
negative function E : [A,B] × Fk → R, strictly positive on ([A,B] ∩ R) × Fk,
GHk integrable in [A,B], with

(GHk)
∫ B

A

E ≤ ε

2

(for example,

E(t; Λ1, . . . ,Λk) =
k∑
j=1

|Λj |
ε

2π(1 + t2)
, t ∈ [A,B],

with the convention E(±∞; Λ1, . . . ,Λk) = 0 for every choice of Λj ∈ F , j =
1, . . . , k); a gauge γ0 on [A,B], such that∑

i=1,...,n, |Ii|<+∞

E(ti;Fi,1, . . . , Fi,k) ≤ ε (11)

for each γ0-fine partition Π of [A,B],

Π := {(ti;Fi,1, . . . , Fi,k), i = 1, . . . , n} = {(ti; Ii), i = 1, . . . , n},

with
k⋃
j=1

Fi,j = Ii, i = 1, . . . , n.

Let now ε > 0, γ be as in 5.4, γ̂ = γ ∩ γ0, and

Π := {(ti;Fi,1, . . . , Fi,k), i = 1, . . . , n} = {(ti; Ii), i = 1, . . . , n},

be any γ̂-fine k-partition of [A,B], where
k⋃
j=1

Fi,j = Ii, i = 1, . . . , n. Then for

each i = 1, . . . , n there exists a positive integer hi such that

ρ(Uh(ti;Fi,1, . . . , Fi,k), U(ti;Fi,1, . . . , Fi,k)) ≤ E(ti;Fi,1, . . . , Fi,k) (12)



54 A. Boccuto, D. Candeloro and A. R. Sambucini

whenever h ≥ hi. Pick now h ≥ maxi=1,...,n hi. From (11) and (12) we have:

ρ

(∑
Π

Uh,
∑
Π

U

)

= ρ

 ∑
i=1,...,n,|Ii|<+∞

Uh(ti;Fi,1, . . . , Fi,k),
∑

i=1,...,n,|Ii|<+∞

U(ti;Fi,1, . . . , Fi,k)


≤

∑
i=1,...,n,|Ii|<+∞

ρ(Uh(ti;Fi,1, . . . , Fi,k), U(ti;Fi,1, . . . , Fi,k))

≤
∑

i=1,...,n,|Ii|<+∞

E(ti;Fi,1, . . . , Fi,k) ≤ ε.

It follows that

lim
h→+∞

ρ

(∑
Π

Uh,
∑
Π

U

)
= 0.

Now we get:

ρ

(∑
Π

U, (GHk)
∫ B

A

Uh

)
≤ ρ

(∑
Π

U,
∑
Π

Uh

)
+ρ

(∑
Π

Uh, (GHk)
∫ B

A

Uh

)
≤ 2ε.

Choose now arbitrarily two γ̂-fine partitions Π and Π′ of [A,B], and let h∗ =
max{maxi hi, maxj h′j}, where the integers hi, h′j associated to Π and Π′ re-
spectively have the same rôle as the h′is in (12). We get:

ρ

(∑
Π

U,
∑
Π′

U

)
≤ ρ

(∑
Π

U, (GHk)
∫ B

A

Uh∗

)
(13)

+ ρ

(∑
Π′

U, (GHk)
∫ B

A

Uh∗

)
≤ 4ε.

Integrability of U on [A,B] follows from (13) and the Cauchy criterion 4.2.
Finally, to every ε > 0 there corresponds a gauge γ on [A,B] such that for

any γ-fine k-partition Π there exists h ∈ N with

ρ

(
(GHk)

∫ B

A

Uh, (GHk)
∫ B

A

U

)
≤ ρ

(
(GHk)

∫ B

A

Uh,
∑
Π

Uh

)

+ ρ

(∑
Π

Uh,
∑
Π

U

)
+ ρ

(∑
Π

U, (GHk)
∫ B

A

U

)
≤ 3ε

for all h ≥ h. This implies that

lim
h→+∞

ρ

(
(GHk)

∫ B

A

Uh, (GHk)
∫ B

A

U

)
= 0. �
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The next step is to prove a version of the convergence theorem with respect to
the ”uniform convergence”. To this aim we introduce the following concept.

Definition 5.6. Given a sequence of functions (Un : [A,B]×Fk → X)n∈N∪{0},
we say that the Un’s, n ≥ 1, variationally uniformly converge to U0 if to every
ε > 0 an integer n0 can be found, such that

ρ

(
q∑
i=1

Un(ti;Fi,1, . . . , Fi,k),
q∑
i=1

U0(ti;Fi,1, . . . , Fi,k)

)
≤ ε

for every n ≥ n0 and any k-partition Π = {(ti, Fi,1, . . . , Fi,k), i = 1, . . . , q} =

{(ti, Ii), i = 1, . . . , q} of [A,B], where
k⋃
j=1

Fi,j = Ii, i = 1, . . . , q.

Observe that, if k = 1 and

Un(t; [u, v]) = [g(v)− g(u)] · fn(t), n ∈ N ∪ {0},

where g : [A,B]→ R is of bounded variation and the sequence (fn : [A,B]→ X)n
is uniformly convergent to f0 on [A,B], then the Un’s variationally uniformly
converge to U0. In this case, under the hypothesis of uniform convergence of
(fn)n to f0, if the fn’s, n ≥ 1, are Henstock-Stieltjes integrable with respect to
g, then f0 is too, and we get the exchange of limits under the sign of integral.

An example in which this happens if when we take X = L(R) (i. e. the
set of all fuzzy numbers), and define fn : [0, 1] → X by setting fn(x) =
χ[0,1]∩[x−1/n,x+1/n], n ∈ N, then the sequence (fn)n is uniformly convergent
to the ”identity” function (in the sense that the generic element x ∈ [0, 1] is
identified with the element χ{x}).

Theorem 5.7. Let (Un : [A,B]× Fk → X)n be a sequence of functions, GHk

integrable on [A,B] and variationally uniformly convergent to a map U .
Then U is GHk integrable on [A,B] and

lim
n→+∞

ρ

(
(GHk)

∫ B

A

Un, (GHk)
∫ B

A

U

)
= 0.

Proof: Let ε > 0, and take n0 = n0(ε) according to variationally uniform
convergence. Then

ρ

(∑
Π1

U,
∑
Π2

U

)
≤ ρ

(∑
Π1

U,
∑
Π1

Un0

)

+ ρ

(∑
Π1

Un0 ,
∑
Π2

Un0

)
+ ρ

(∑
Π2

Un0 ,
∑
Π2

U

)

≤ 2ε+ ρ

(∑
Π1

Un0 ,
∑
Π2

Un0

)
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for any two partitions Π1, Π2 of [A,B]. Since Un0 is GHk integrable on [A,B],
then there is a map δ = δn0 : [A,B] → R+, such that, for any two δ-fine
k-partitions Π1, Π2 of [A,B],

ρ

(∑
Π1

Un0 ,
∑
Π2

Un0

)
≤ ε,

and hence

ρ

(∑
Π1

U,
∑
Π2

U

)
≤ 3ε.

Thus U is GHk integrable on [A,B], by virtue of the Cauchy criterion 4.2. So
there exists a map δ′ : [A,B]→ R+ such that

ρ

(∑
Π

U, (GHk)
∫ B

A

U

)
≤ ε

for each δ′-fine partition Π of [A,B]. Fix n ≥ n0 and choose κn : [A,B] → R+

such that

ρ

(∑
Π

Un, (GHk)
∫ B

A

Un

)
≤ ε

whenever Π is a κn-fine partition of [A,B]. Put δn = min{δ′, κn}: for any
δn-fine k-partition Π of [A,B] we obtain

ρ

(
(GHk)

∫ B

A

Un, (GHk)
∫ B

A

U

)
≤ ρ

(
(GHk)

∫ B

A

U,
∑
Π

U

)

+ ρ

(∑
Π

U,
∑
Π

Un

)
+ ρ

(∑
Π

Un, (GHk)
∫ B

A

Un

)
≤ 3ε,

and thus the last part of the assertion. �
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[5] A. Boccuto and B. Riečan, Improper Kurzweil-Henstock integral for metric
semigroup-valued functions, Atti Sem. Mat. Fis. Univ. Modena (2006), to
appear.

[6] A. Boccuto and A. R. Sambucini, The Henstock-Kurzweil integral for func-
tions defined on unbounded intervals and with values in Banach spaces, Acta
Math. (Nitra) 7 (2004), 3-17.

[7] D. Candeloro, Riemann-Stieltjes Integration in Riesz Spaces, Rend. Mat.
(Roma) 16 (1996), 563-585.

[8] A. G. Das and S. Kundu, A generalized Henstock integral, Real Anal. Exch.
29 (2003/2004), 59-78.

[9] A. G. Das and S. Kundu, A characterization of the GHk integral, Real Anal.
Exch. 30 (2004/2005), 639-655.

[10] S. Kumar Ray and A. G. Das, A new definition of generalized Riemann-
Stieltjes integral, Bull. Inst. Math. Acad. Sinica 18 (1990), 273-282.
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