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1. Introduction

The notion of integral of a multivalued function is very useful in many

branches of mathematics like mathematical economics, control theory,

differential inclusions, convex analysis, etc. It has been introduced by
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many authors and in different ways. The first was Aumann in 1965, in

order to apply it to general equilibria in economics. This integral was

built using selections, but some properties were missing, so Debreu intro-

duced the multivalued Bochner integral. In both cases the definition of

measurable multifunction is crucial since it is necessary to ensure that at

least a selection exists. Many authors worked on the problem of measura-

bility of multifunctions; we quote here for example [4, 13, 11, 9, 10, 2] for

the countably additive case and [20] for a review in the finitely additive

case.

Here we introduce a new kind of multivalued integral which does not

need a priori the notion of measurability; this fact looks interesting for

example in differential inclusions. The idea comes out from a discussion

with Prof. Jan Andres during a congress in 2000 and was presented in

2003 at the XVII Congress of U.M.I..

Our starting point is a paper by Jarńık and Kurzweil [14] in which

the authors proposed a new definition based on Kurzweil-Henstock ”se-

lections” for Rn-valued multifunctions, defined in a bounded interval of

R. Jarńık and Kurzweil applied it to differential inclusions and showed

that under suitable conditions (namely compactness of values) this inte-

gral coincides with the Aumann’s one.

Here we extend these results in two directions: we consider in fact

multifunctions defined in the whole real line and moreover taking values

in a Banach space not necessarily separable. In particular in section 3

we introduce the (?)-integral by using McShane integrable single valued

functions and then we compare it with the Aumann integral. Finally, in

section 4, making use of the R̊adstrom embedding theorem, the McShane

multivalued integral is introduced and compared with the (?) and Au-

mann integrals. When the McShane multivalued integral exists, then the

(?)-integral exists too and it coincides with it, and so all the properties
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of the single valued McShane integral are inherited by the multivalued

one.

2. Preliminaries and known results on the

generalized McShane integral.

The generalized McShane integral (McShane integral briefly), as a limit

of suitable Riemann sums, was developed in the vector valued case by

Fremlin in [7]. In this section, we assume that S is a space and T
a topology on S making (S, T , Σ, µ) a non-empty σ-finite quasi-Radon

measure space which is outer regular, namely such that

µ(B) = inf{µ(G) : B ⊆ G ∈ T } ∀B ∈ Σ.

A generalized McShane partition P of S ([7, Definitions 1A]) is a disjoint

sequence (Ei, ti)i∈N of measurable sets of finite measure, with ti ∈ S for

every i ∈ N and µ(S \
⋃

i Ei) = 0.

A gauge on S is a function ∆ : S → T such that s ∈ ∆(s) for every

s ∈ S. A generalized McShane partition (Ei, ti)i is subordinate to ∆ if

Ei ⊂ ∆(ti) for every i ∈ N.

From now on with the symbol P we denote the class of all generalized

McShane partitions of [a, b], and with P∆ those elements from P that

are subordinate to ∆.

Let X be a Banach space. We say that:

Definition 1 [7, Definitions 1A] A function f : S → X is McShane in-

tegrable, with integral w, if for every ε > 0 there exists a gauge ∆ : S → T
such that

lim sup
n→+∞

∥∥∥∥∥w −
n∑

i=1

µ(Ei)f(ti)

∥∥∥∥∥ ≤ ε

for every generalized P∆ McShane partition (Ei, ti)i. In this case, we

write
∫

S
f = w.
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For the properties of the McShane generalized integral we suggest the

quoted article [7] by Fremlin. Here we recall only this result which will

be used later:

[7, Lemma 1J] Let f : S → X be a function. Then, for every ε > 0,

there exists a gauge ∆ : S → T such that

∞∑
i=1

µ(Ei) ‖f(ti)‖ ≤
∫

S

‖f(t)‖µ(dt) + ε,

whenever (Ei, ti)i is a generalized P∆ McShane partition of S and∫
S
‖f(t)‖µ(dt) denotes outer integration, namely∫
S

‖f(t)‖µ(dt) := inf

{∫
S

g(t)µ(dt), g ∈ L1(R), ‖f(t)‖ ≤ g(t)

}
.

Fremlin in [7] studied also the relationship among this integral and the

usual ”strong” and ”weak” integrals in Banach spaces. In particular this

new integral, which coincides with the classical one in R, is weaker than

the Bochner and stronger than the Pettis one. In fact Bochner inte-

grability implies McShane integrability and the two integrals agree ([7,

Theorem 1K]), while McShane integrability implies Pettis integrability

and the two integrals agree ([7, Theorem 1Q]). Moreover, if the Banach

space X is separable, then McShane and Pettis integrability coincide ([7,

Corollary 4C]).

3. Applications to multivalued integration

Here we introduce a new kind of multivalued integral. There are in the

literature several papers on Aumann integration and other multivalued

integrations; see for example [1], [20] and their bibliography. Note that,

in all existing multivalued integration theories, in order to define the

multivalued integrals, a notion of measurability or ”total measurability”
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is required. For the kind of integrability that we will introduce, no mea-

surability is required a priori and so we can define a multivalued integral

also in non separable Banach spaces.

Throughout this section, let S = [a, b], where a, b ∈ [−∞, +∞], a < b.

Moreover, assume that T , Σ and µ are respectively the families of all open

subsets of [a, b], the σ-algebra of all Lebesgue measurable subsets of [a, b]

and the Lebesgue measure on [a, b] respectively.

Let cwk(X) [ck(X)] denote the family of all convex and weakly

compact [respectively convex and compact] subsets of a Banach space X.

We denote with the symbol d(x, C) the usual distance between a point

and a nonempty set C ⊂ X, namely d(x, C) = inf{‖x− y‖ : y ∈ C}, and

by U(C, ε) the ε-neighborhood of the set C, i.e.

U(C, ε) = {z ∈ E : ∃x ∈ C with ‖x− z‖ ≤ ε}.

Observe that, if C is convex, then U(C, ε) = co(U(C, ε)).

If C, D are two nonempty subsets of X, we denote with the symbol

e(C,D) the excess of C with respect to D, namely e(C, D) = sup{d(x, D) :

x ∈ C}, while the Hausdorff distance between C and D is h(C,D) =

max{e(C, D), e(D,C)}. We remember that h(C,D) = 0 if and only if

cl{C} = cl{D}, where the symbol cl{·} denotes the closure of the con-

sidered set with respect to the norm topology.

Like in [14] we define a multivalued integral in the following way:

Definition 2 Let F : [a, b] → 2X \ ∅ be a multifunction. We call

(∗)-integral of F over [a, b] the set Φ(F, [a, b]) given by:

Φ(F, [a, b]) = {x ∈ X : ∀ ε > 0, ∃ a gauge ∆ : for every generalized

P∆ McShane partition(Ei, ti)i∈N there holds

lim sup
n

d(x,

n∑
i=1

F (ti)µ(Ei)) ≤ ε},

where, as usual,
∑n

i=1 F (ti)µ(Ei) := {
∑n

i=1 xiµ(Ei) : xi ∈ F (ti)}.
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Observe that, if F is single-valued, then Φ(F, [a, b]) coincides with the

McShane integral, if it exists. We now show that:

Proposition 1 If F is bounded valued, then

Φ(F, [a, b]) =
⋂
ε>0

⋃
∆

⋂
(Ei,ti)i∈P∆

∞⋃
m=1

∞⋂
n=m

U(
n∑

i=1

F (ti)µ(Ei), ε). (1)

Proof. Let z ∈ Φ(F, [a, b]); for every ε > 0, there exists a gauge ∆(ε/2)

such that for every generalized P∆ McShane partition (Ei, ti)i

lim sup
n

d(z,
n∑

i=1

F (ti)µ(Ei)) = inf
m≥1

sup
n≥m

d(z,
n∑

i=1

F (ti)µ(Ei)) ≤ ε/2.

From this it follows that there exists m ∈ N such that

d(z,
n∑

i=1

F (ti)µ(Ei)) ≤ ε for every n ≥ m,

and thus

z ∈
∞⋃

m=1

∞⋂
n=m

U(
n∑

i=1

F (ti)µ(Ei), ε).

Hence, z ∈
⋂
ε>0

⋃
∆

⋂
(Ei,ti)i∈P∆

∞⋃
m=1

∞⋂
n=m

U(
n∑

i=1

F (ti)µ(Ei), ε).

Conversely, let z ∈
⋂
ε>0

⋃
∆

⋂
(Ei,ti)i∈P∆

∞⋃
m=1

∞⋂
n=m

U(
n∑

i=1

F (ti)µ(Ei), ε). Then,

for every ε > 0, there exists a gauge ∆ such that, for every generalized

P∆ McShane partition (Ei, ti)i,

z ∈
∞⋃

m=1

∞⋂
n=m

U(
n∑

i=1

F (ti)µ(Ei), ε),

which means that for every ε > 0, there exists a gauge ∆ such that, for

every generalized P∆ McShane partition (Ei, ti)i,

lim sup
n

d(z,
n∑

i=1

F (ti)µ(Ei)) ≤ ε,

namely z ∈ Φ(F, [a, b]). 2
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Remark 1 (a) Observe that, by definition, the set Φ(F, [a, b]) is closed;

in fact if (zn)n is a sequence in Φ(F, [a, b]) which converges to z ∈ X

then, for every ε > 0 there exist an integer k and a gauge ∆k such

that for every generalized P∆k
McShane partition (Ei, ti)i

‖z − zk‖ ≤ ε/2, lim sup
n→∞

d(zk,

n∑
i=1

F (ti)µ(Ei)) ≤ ε/2;

then

lim sup
n→∞

d(z,
n∑

i=1

F (ti)µ(Ei)) ≤

≤ lim sup
n→∞

(
‖z − zk‖+ d(zk,

n∑
i=1

F (ti)µ(Ei))

)
≤ ε.

and therefore, by definition, z ∈ Φ(F, [a, b]).

(b) Moreover, if F is closed and convex valued, Φ(F, [a, b]) is convex too.

In fact, since

Φ(F, [a, b]) =
⋂
ε>0

⋃
∆

⋂
(Ei,ti)i∈P∆

∞⋃
m=1

∞⋂
n=m

U(
n∑

i=1

F (ti)µ(Ei), ε), (2)

if x, y ∈ Φ(F, [a, b]) then for every ε > 0 there exist ∆x, ∆y such

that

x ∈
⋂

(Ei,ti)i∈P∆x

∞⋃
m=1

∞⋂
n=m

U(
n∑

i=1

F (ti)µ(Ei), ε)

y ∈
⋂

(Ei,ti)i∈P∆y

∞⋃
m=1

∞⋂
n=m

U(
n∑

i=1

F (ti)µ(Ei), ε).

Let ∆ = ∆x ∩∆y. Then, for every generalized P∆ McShane parti-

tion (Ei, ti)i, we have:

x, y ∈
⋂

(Ei,ti)i∈P∆

∞⋃
m=1

∞⋂
n=m

U(
n∑

i=1

F (ti)µ(Ei), ε)
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and so there are two integers m1, m2 such that

x ∈
∞⋂

n=m1

U(
n∑

i=1

F (ti)µ(Ei), ε), y ∈
∞⋂

n=m2

U(
n∑

i=1

F (ti)µ(Ei), ε).

If we take m = max{m1,m2} then

x, y ∈
∞⋂

n=m

U(
n∑

i=1

F (ti)µ(Ei), ε)

and so, since this last set is convex, for every a ∈ [0, 1],

ax + (1− a)y ∈
⋂

(Ei,ti)i∈P∆

∞⋃
m=1

∞⋂
n=m

U(
n∑

i=1

F (ti)µ(Ei), ε).

Then the convexity of Φ(F, [a, b]) follows.

(c) If F is integrably bounded, namely there exists g ∈ L1([a, b]) such

that h(F (t), {0}) ≤ g(t) a.e. , then Φ(F, [a, b]) is bounded. Indeed

for every z ∈ Φ(F, [a, b]) and for every ε > 0 there are a gauge ∆

and a point x ∈
∑n

i=1 F (ti)µ(Ei) (where (Ei, ti)i is a generalized

P∆ McShane partition) such that ‖z − x‖ ≤ ε, and hence

‖z‖ ≤ ‖z − x‖+ ‖x‖ ≤ ε + ‖g‖1.

By the arbitrariness of z, it follows that Φ(F, [a, b]) is bounded.

Observe also that in the definition no separability of X,X ′ is required.

Consider now the classical integral given in the theory of multivalued

integration, namely the Aumann integral [1], which is defined by:

(A)−
∫ b

a

Fdt =

{
(B)−

∫ b

a

fdt; f ∈ S1
F

}
,

where S1
F is the set of all Bochner integrable selections of F .

We recall also that a multifunction F is measurable if

F−(C) = {t ∈ [a, b] : F (t) ∩ C 6= ∅}

is a Borel set for every closed set C ⊂ X.

We want to compare now the (∗)- and the (A)-integrals.
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Proposition 2 Let F : [a, b] → 2X \ ∅ be a multifunction. Then

(A)−
∫ b

a

Fdt ⊂ Φ(F, [a, b]).

Proof: Since the proof is easy, we give it only for the sake of simplicity.

The inclusion is obvious if the Aumann integral is empty. If it is not,

let z ∈ (A)
∫ b

a
F (t)dt, then there exists a function f ∈ S1

F such that

f(t) ∈ F (t) for every t ∈ [a, b] and z =
∫ b

a
fdµ. Since f is Bochner

integrable it is also McShane integrable and so, for every ε > 0, there

exists a gauge ∆ such that, for every P∆ generalized McShane partition

(Ei, ti)i, we have

lim sup
n

d(z,
n∑

i=1

F (ti)µ(Ei)) ≤ lim sup
n

‖z −
n∑

i=1

f(ti)µ(Ei)‖ ≤ ε

and thus it follows that z ∈ Φ(F, [a, b]). 2.

In order to prove the opposite inclusion we suppose that the multi-

function F is also cwk(X)-valued, measurable and integrably bounded

and that the space X is separable. In this case, we will show that the

(A)-integral is non empty. In order to prove this, we recall the following

useful results:

Proposition 3 [12, Proposition II.5.20] Let X be a separable Banach

space. If F : [a, b] → cwk(X) is graph measurable and integrably bounded,

then

(A)−
∫ b

a

F (t)dt ∈ cwk(X).

Proposition 4 [12, Proposition II.5.2] Let X be a separable Banach

space. If F : [a, b] → cwk(X) is graph measurable and S1
F 6= ∅, then for

every x′ ∈ X ′ we have:

s(x′, (A)−
∫ b

a

F (t)dt) =

∫ b

a

s(x′, F (t)) dt

where s(x′, ·) is the support function defined for any nonempty set C ⊂ X

by s(x′, C) = sup{< x′, x >: x ∈ C}.
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Lemma 1 [4, Lemma III.14] Let P = (x′n)n be a dense sequence in

X ′ for the topology τ(X ′, X), and K be a closed, convex, weakly locally

compact subset of X which contains no line. Then

K = ∩n{x ∈ X : < x′n, x > ≤ s(x′n, K)}.

Moreover

Proposition 5 Let X be a Banach space and F : [a, b] → cwk(X) be

a measurable and integrably bounded multifunction. Then, if we set

L =

∫ b

a

s(x′, F (t))dt

for every x′ ∈ X ′ we have

Φ(F, [a, b]) ⊂ {z ∈ X : < x′, z > ≤ L} . (3)

Proof: Let z ∈ Φ(F, [a, b]) and suppose that (3) is not true. Then

< x′, z > −L = α > 0.

By definition of (∗)-integral, there exists a gauge ∆∗ such that, for every

generalized McShane partition (Ei, ti)i subordinate to ∆∗(α/6), we have:

lim sup
n

d

(
z,

n∑
i=1

F (ti)µ(ti)

)
:= r ≤ α/6. (4)

Let now ε > 0 satisfy r + ε < α/3. Then, in correspondence to ε, there

exists an integer n such that, for every n ≥ n,

d

(
z,

n∑
i=1

F (ti)µ(Ei)

)
< α/3.

Since F has weakly compact values, then, for every n ≥ n, there exists

xn ∈
∑n

i=1 F (ti)µ(Ei) such that ‖z − xn‖ = d(z,
∑n

i=1 F (ti)µ(Ei)) and

hence

< x′, z > ≤ | < x′, xn > |+ | < x′, z − xn > | ≤ (5)

≤ s(x′,
n∑

i=1

F (ti)µ(Ei)) + α/3 ≤

≤
n∑

i=1

s(x′, F (ti)µ(Ei)) + α/3.
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Moreover we know that s(x′, F ) is Lebesgue integrable, since it is mea-

surable and dominated by h(F (t), {0}) and so, by [7, Lemma 1J] already

quoted, there exists a gauge ∆0 such that for every generalized P∆0 Mc-

Shane partition Π′ = (E ′
i, t

′
i)i,

n∑
i=1

s(x′, F (ti)µ(Ei)) ≤ L + α/3. (6)

Therefore, if we consider ∆ = ∆∗ ∩ ∆0 and we take any generalized

P∆ McShane partition, inequalities (4), (5) and (6) give us the following

contradiction: < x′, z >≤ L+2α/3 =< x′, z > −α/3. Hence (3) holds.2

Now we are in position to state our comparison result.

Theorem 1 Suppose that X is a separable Banach space and that there

exists a countable family (x′n)n in X ′ which separates points of X. Then

(A)

∫ b

a

F (t)dt = Φ(F, [a, b])

holds, for any measurable and integrably bounded multifunction F : [a, b] → cwk(X).

Remark 2 Observe that this theorem extends [14, Theorem 3] in sev-

eral directions: first of all, we obtain an analogous result in infinite di-

mensional spaces, rather then a Euclidean space. Moreover here multi-

functions with unbounded domains are allowed, and their values are only

requested to be convex and weakly-compact. The hypothesis of convex-

ity of the values could not be dropped in our case; indeed in the infinite

dimensional case there are examples of non convex Aumann integrals.

Proof of Theorem 1: The inclusion

(A)−
∫ b

a

Fdt ⊂ Φ(F, [a, b])

is contained in Proposition 2 which holds without any assumption on

F and X. The other inclusion is proved similarly as in [14, Theorem
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3]. Observe that from [4, Lemma III.32] it is possible to construct a

countable family P which is dense in E ′ for τ(E ′, E). So, let P = (x′n)n.

By [4, Lemma III.14] quoted above, we know that, for every t ∈ [a, b],

F (t) =
⋂
n

{z ∈ X : < x′n, z > ≤ s(x′n, F (t))} .

Set Ln =

∫ b

a

s(x′n, F (t))dt. Applying Proposition 5 we have that

Φ(F, [a, b]) ⊂
⋂
n

{z ∈ X : < x′n, z > ≤ Ln} .

Observe also that, since F is cwk(X)-valued, then its (A)-integral belongs

to the same hyperspace by Proposition 3 ([12, Proposition 5.20]) and

then, using again [4, Lemma III.14], we have

(A)−
∫ b

a

F (t)dt =
⋂
n

{
x ∈ X :< x′n, x >≤ s(x′n, (A)−

∫ b

a

F (t)dt)

}
.

Thus we have proved that

Φ(F, [a, b]) ⊂ (A)

∫ b

a

F (t)dt

and this concludes the proof of the theorem. 2

Theorem 1 can be applied in the comparison of Aumann integral and

other known integrals; for the relationship with the Debreu integral see

for example [3, 19, 15, 16, 20]. For weakly compact valued multifunctions

the result was obtained for totally measurable multifunctions. In general,

measurable multifunctions are not totally measurable. Here we give an

example of a measurable multifunction not totally measurable for which

the Aumann and the (?)-integrals coincide.

Example 1 Let X = l2(N∗); for every A ⊂ N∗ we consider

UA = {x ∈ X : ‖x‖ ≤ 1, and xn = 0 if n 6∈ A} = {1Ax : ‖x‖ ≤ 1},
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where (1Ax)n = 1A(n)xn. If A 6= B then h(UA, UB) ≥ 1 and so the set

{UA, A ⊂ N∗} is not separable.

Let Ω = [0, 1[ and for every ω ∈ Ω let 0, ω1 · · ·ωn · · · be its dyadic

representation, namely ω1 = 1 iff ω ∈ [1/2, 1[, ω2 = 1 iff ω ∈
[1/4, 1/2[∪[3/4, 1[, etc. We set B1 = [1/2, 1[, B2 = [1/4, 1/2[ ∪ [3/4, 1[,

etc.

Let F (ω) = UA(ω) where A(ω) = {n ∈ N∗ : ωn = 1}. F is integrably

bounded, takes weakly compact and convex values and its support func-

tion s(y, F (ω)) is measurable since it is the limit of simple functions;

indeed:

s(y, F (ω)) = {
∑

n∈A(ω)

y2
n}1/2 = lim

n→∞

∑
p≤n

s(y, F (ω))1Bp(ω)

and ∑
p≤n

s(y, F (ω))1Bp(ω) = {
∑
p≤n

y2
p : ωp = 1}1/2.

From [12, Proposition II.2.39] F is measurable, but for every µ-null set

N , the set Ω \ N is not countable and so F (Ω \ N) is not separable in

the h-metric topology. Then immediately it follows that F cannot be

a member of the closure of simple multifunctions with weakly compact

and convex values in the L1-metric associated with h and so F is not a

Bochner integrable multifunction. Moreover, by Theorem 1,

Φ(F, [0, 1[) = (A)−
∫ 1

0

F (ω)dµ(ω).

4. The McShane multivalued integral

If we consider directly the hyperspace (cwk(X), h) we can define the

McShane multivalued integral in the following way:
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Definition 3 We say that F : [a, b] → cwk(X) is McShane integrable

if there exists J ∈ cwk(X) such that for every ε > 0 there exists a gauge

∆ such that

lim sup
n

h(J,
n∑

i=1

F (ti)µ(Ei)) ≤ ε

for every generalized P∆ McShane partition Π = (Ei, ti)i. In this case,

we set

J :=

∫ b

a

F (t)dt.

Thanks to the R̊adstrom embedding theorem [18], this definition is well-

posed, and we will show the following:

Theorem 2 If F : [a, b] → cwk(X) is McShane integrable, then the

(?)-integral and the McShane integral coincide, namely J = Φ(F, [a, b]).

Proof: The inclusion J ⊂ Φ(F, [a, b]) is obvious; indeed if z ∈ J , then

for every ε > 0 there exists a gauge ∆ such that for each generalized

P∆ McShane partition (Ei, ti)i∈N we get:

lim sup
n

d(z,
n∑

i=1

F (ti)µ(Ei)) ≤ lim sup
n

h(J,
n∑

i=1

F (ti)µ(Ei)) ≤ ε.

Conversely, let now z ∈ Φ(F, [a, b]). Then, for every ε > 0, there ex-

ists a gauge ∆ such that, for every generalized P∆ McShane partition

(Ei, ti)i∈N, we have

lim sup
n

d(z,
n∑

i=1

F (ti)µ(Ei)) ≤ ε/2.

On the other hand, by the definition of the McShane integral, there

exists a gauge ∆1 such that for every generalized P∆1 McShane partition

(E ′
i, t

′
i)i, we get

lim sup
n

h(J,
n∑

i=1

F (t′i)µ(E ′
i)) ≤ ε/2.
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So, if we take ∆̃ = ∆ ∩ ∆1, then, for every generalized P
e∆ McShane

partition Π = (Ei, ti)i and for every x ∈
∑n

i=1 F (ti)µ(Ei) we have

d(z, J) = inf
y∈J

‖z − y‖ ≤ inf
y∈J

(‖z − x‖+ ‖x− y‖) =

= ‖z − x‖+ d(x, J) ≤ ‖z − x‖+ h(
n∑

i=1

F (ti)µ(Ei), J).

So we have

d(z, J) ≤ lim sup
n

(
d(z,

n∑
i=1

F (ti)µ(Ei)) + h(
n∑

i=1

F (ti)µ(Ei), J)

)
≤ ε

for every generalized P
e∆ McShane partition (Ei, ti)i. Since ε is arbitrary

and Φ(F, [a, b]) is closed, the last inclusion follows. 2

Observe that if X is separable and F : Ω → ck(X) is a measurable

multifunction with unbounded range, then Debreu integrability implies

McShane’s one. In this case we can embed (ck(X), h) in a suitable sep-

arable Banach space Y and, if we consider F as a Y -valued measurable

function, McShane integrability coincides with the Pettis’ one. If the

range of F is bounded and µ(Ω) < ∞, the two concept of integral coin-

cide; see for example [6, Section 2K].

If we consider a multifunction with weakly compact and convex values

we need total measurability of F since (cwk(X), h) is not separable in

general. In this case we have:

Corollary 1 If µ is finite, X is a separable Banach space and F :

Ω → cwk(X) is a Debreu integrable multifunction, then F is McShane

integrable and its integral coincides with the Aumann integral of F .

Proof: Thanks to the result of Byrne [3] the Debreu integral and the

Aumann integral coincide; thank to [7, Theorem 1K] the Debreu and the

McShane integrals coincide too. 2
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An example of an integrably bounded and McShane integrable mul-

tifunction which is not Debreu integrable can be obtained using [6, Ex-

ample 3F] and taking F (t) = {f(t)}, where f takes values in the non

separable Banach space L∞([0, 1]).

Theorem 2 implies that, when F is cwk(X)-valued and McShane in-

tegrable, Φ(F, [a, b]) is convex and weakly compact and so in this case

we obtain [14, Proposition 1] as a corollary of Theorem 2.

Theorem 2 is also important from another point of view: indeed, thanks

to the R̊adstrom embedding theorem, all the fundamental results con-

cerning the McShane integral, which are given in [7], are still valid for

cwk(X)-valued multifunctions. So it is enough to consider the space

cwk(X) as a Banach space, which plays the role of the Banach space

X in the previous section. So Φ(F, [a, b]) satisfies the main fundamen-

tal properties of the functionals defined by means of integrals, like for

example additivity and absolute continuity.

Remark 3 Though in this paper Ω is always assumed to be an interval

in the real line (possibly unbounded), we observe that all the results here

obtained hold as well whenever Ω is any non empty σ-finite quasi Radon

outer regular measure space.
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