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Abstract

We introduce the Aumann integral in the finitely additive setting and we compare it with the
Bochner integral.
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1 Introduction

In Mathematical Economics the search for Walras equilibria makes use of the multivalued integral
as defined in 1962 by Aumann, [2]. In the classical model the bundle set, the commodity space
and so on are defined as subsets or functions in the Euclidean space IRn. However, in a world of
uncertainty where there are an infinite number of states or an intertemporal economy having an
infinite number of time periods (e.g. an infinite horizon), the appropriate model for the space of
commodities is an infinite dimensional vector space, [1].
There exists a large literature concerning the integral of multifunctions with values in infinite
dimensional vector spaces, and its applications in Mathematical Economics: nevertheless the finitely
additive setting has been quite neglected so far. This is in a certain sense rather surprising, for
the finitely additive case could be the best solution to a basic conflict that the countable additive
setting leaves unsolved: indeed, it is known that in the model of a large economy it is desirable to
assign zero influence to a single agent, and therefore to equip the space of the agents Ω with the
structure of a non atomic measure space (Ω, Σ, µ).
Moreover, no group of agents is a priori excluded from forming a coalition. Indeed, for a simple
economy we defined the set of coalitions to be the set of all subsets. If the economy is not simple
the σ-algebra Σ is introduced only for technical reasons. Conceptually Σ should be considered as

1Lavoro svolto nell’ ambito del G.N.A.F.A. del C.N.R.
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the set of all subset, [13]. The technical reasons lie in the famed Ulam Theorem, [5], Assuming
the C.H., if card(Ω) = c every non atomic measure on P (Ω) is identically zero.
This is not the case for strongly non atomic finitely additive measures.
In this paper we shall examine some aspects of multivalued integration in a separable Banach space
X with respect to a scalar finitely additive measure.
Obviously the assumption Σ = P(Ω) would substantially semplify measurability questions, but,
again because of the Ulam Theorem, would not generalize the countably additive case: for this
reason our investigation has been accomplished with any σ-algebra Σ on Ω.
The point of view of this paper is that of comparing the Aumann approach with the more classical
Bochner approach, namely using approximation via simple multifunctions. In fact, if Aumann
integral is the more natural in view of the applications in Mathematical Economics, in general it
lacks most of the properties one would expect an integral to enjoy, as for example convergence
results.
Hence the equivalence of the Aumann integral with a classical Bochner integral would greatly
enhance its properties. This equality is known in the countably additive case for measurable
integrands with convex, compact values in [8, 12] and for totally measurable integrands with convex,
weakly compact values in [6]. Here we will obtain the equivalence in the finitely additive setting for
totally measurable integrands with convex, compact values: the main idea is that of using Stone
extensions which preserve the Bochner integral. Therefore the comparison of the Aumann and the
Bochner integral has been transferred to the comparison of the Aumann integral and the Aumann
integral of the Stone extension.

2 Notations and Preliminaries

We will use the terminology of [9] and that of [7]. In particular we will use the following definitions
and notations.

• X is a separable Banach space.
• X∗ is the topological dual of X, X∗

s (resp. X∗
b ) is the vector space X∗ equipped with the σ(X∗, X)

(resp. norm) topology.
• X1 (resp. X∗

1 ) is the closed unit ball in X (resp. X∗
b ).

• cb(X) (resp. ck(X)) is the collection of all non empty convex closed bounded (resp. convex
compact) subsets of X.

• If A and B are subsets of X, the excess of A over B is

e(A,B) = sup{d(a, B) : a ∈ A}

and the Hausdorff distance between A and B is

h(A,B) = max{e(A,B), e(B,A)}.
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Observe that for every pair of bounded sets A,B, and for every pair of elements x, y ∈ X it is:

d(x,A) ≤ ‖x− y‖+ d(y,B) + h(A, B). (1)

• The excess e(A, {0}) is denoted by |A|. Then

|A| = sup{‖a‖ : a ∈ A}.

• (Ω, Σ,m) is a measurable space with Σ complete (i.e. Σ contains all m-null sets) and m : Σ → IR+
0

is a bounded finitely additive measure.
• A function f : Ω → X will be said Σ-measurable provided f−1(A) ∈ Σ for every open set A of X.
• A function f : Ω → X is totally measurable when there exists a sequence of measurable simple
functions (fn)n which converges to f in m-measure.

• TM(Ω, Σ,m, X) is the space of all totally measurable functions f : Ω → X.

Remark 2.1 Observe that any f ∈ TM(Ω, Σ,m,X) is also Σ-measurable. This is a consequence
of the σ-completeness of Σ and of the null completeness of m. An elementary proof of this fact
can be given using Theorem 2.4 of [3] in order to prove that a totally measurable function f is
measurable in the Greco sense with respect to the m∗-closure of Σ and using Proposition 1.7.b of
[4] to observe that, if Σ is σ-complete and m is null complete the m∗-closure of Σ is exactly Σ.
Finally since Σ is a σ-algebra, the Greco measurability coincides with the usual one. This result
holds for scalar functions, but it applies also to f ∈ TM(Ω, Σ,m, X).

• A multifunction F : Ω → ck(X) is Effros-measurable (shortly-measurable) if the set F−U =
{ω ∈ Ω : F (ω) ∩ U 6= ∅} belongs to Σ for any open subset U of X.
• A measurable multifunction F : Ω → ck(X) is totally measurable if there exists a sequence of
simple measurable multifunctions (Fn)n with values in ck(X) such that, for every α > 0,

lim
n

m(ω ∈ Ω : h(Fn(ω), F (ω)) > α) = 0.

We denote by TM(Ω,Σ, m, ck(X)) the space of totally measurable multifunctions with non empty,
compact convex values.
• A totally measurable multifunction F : Ω → ck(X) is (B)-integrable if there exists a sequence
(Fn)n of simple multifunctions, Fn with values in ck(X), such that h(Fn, F ) m-converges to

zero and moreover lim
k,n→∞

∫
Ω

h(Fk, Fn)dm = 0. In this case we shall say that (Fn)n is a defining

sequence for F and we define the (B)-integral of F over E as

(B)−
∫

E
Fdm := lim

n→∞
(B)−

∫
E
Fndm.

We denote by L1(Ω, Σ,m, ck(X)) the space of all (B)-integrable multifunctions.
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3 The Stone transform

Let (Ω, Σ) be a measurable space and m : Σ → IR+
0 be a bounded finitely additive measure. Let

S be the Stone space associated to Σ, G the algebra of clopen sets of S and τ : Σ → G the Stone
isomorphism. Gσ is the σ-algebra on S generated by G.
We denote by m : Gσ → IR+

0 the Stone extension of m, [19] and by (S,Gσ, m) the Stone space
relative to (Ω, Σ,m).
The natural injection from Σ onto Gσ induces an isometric isomorphism from cl{TM(Ω, Σ,m, X)}
onto TM(S,Gσ, m, X) and from cl{L1(Ω,Σ, m,X)} onto L1(S,Gσ, m,X) (see for instance [10]).
This isomorphism preserves the order and other structures on L1(Ω,Σ, m,X). We remind that

a) ‖f‖ = ‖f‖ m-a.e.;

b) m({s : |f(s)| > α}) ≤ m({ω : |f(ω)| ≥ α}) ≤ m({s : |f(s)| ≥ α});

c) if f ∈ L1(m), then f ∈ L1(m) and for every E ∈ Σ∫
E

fdm =
∫

τ(E)
fdm.

It is well known that (ck(X), h) is a separable complete metric space. Moreover, using Theorem 2
of [17], (ck(X), h) can be embedded as a closed convex cone in a separable Banach space (Y, ‖ · ‖Y )
in such a way that the embedding is isometric and the addition and the multiplication by a non
negative real number in Y induce the corresponding operations in ck(X).
Now using this fact, and the construction of the single valued vector case, we can consider the
Stone transform of a totally measurable multifunction F : Ω → ck(X).
Observe that h(F , {0}) = h(F, {0}). In fact, since the embedding is isometric,

h(F , {0}) = ‖F‖Y = ‖F‖Y = h(F, {0}).

Moreover F has compact convex values m-a.e..
Now, for every F ∈ L1(Ω, Σ, m, ck(X)) we can consider its extended multifunction F . If (Fn)n =
(
∑kn

i=1 Cn
i 1En

i
) is a defining sequence for F , then for every E ∈ Σ we have:

(B)−
∫

E
Fdm = lim

n
(B)−

∫
E
Fndm = lim

n

kn∑
i=1

Cn
i m(E ∩En

i ) = (2)

= lim
n

kn∑
i=1

Cn
i m(τ(E) ∩ τ(En

i )) = lim
n

(B)−
∫

E
Fndm = (B)−

∫
E
Fdm.

So F ∈ L1(S,Gσ, m, ck(X)) and the Bochner integrals of F and F agree.
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4 The Aumann integral

Given a multifunction F : Ω → cb(X) let

SF = {f ∈ TM(Ω, Σ,m, X) : f(ω) ∈ F (ω) m− a.e.};

S1
F = {f ∈ SF : f ∈ L1(Ω, Σ, m,X)}.

Definition 4.1 If F is such that S1
F is non empty then, for every E ∈ Σ we define the Aumann

integral (shortly (A)-integral ) as

(A)−
∫

E
Fdm = {

∫
E
fdm, f ∈ S1

F }.

So in order to define the Aumann integral for a multifunction F with respect to a finitely additive
measure m we need to prove that S1

F 6= ∅.

The following theorem can be found in several versions in the literature (for instance [15], [14],
[7], [12], [16] ).

Proposition 4.2 Let (T, T ) be a measurable space, X a separable metric space, and F map T to
non empty complete subsets of X. Then the following properties are equivalent:

a) for each open set U , U ⊂ X,F−1U ∈ T ;

b) for each x ∈ X the function ω 7→ d(x, F (ω)) is measurable;

c) there exists a sequence of measurable functions fn : Ω → X such that F (ω) = cl{fn(ω)}. In this
case the sequence (fn)n is called a Castaing representation of F .

Now analogously to [15], and Theorem III.6 of [7] we prove that for suitable measurable multifunc-
tions F the set

SF = {f : Ω → X, f ∈ TM(Ω, Σ,m,X), f(ω) ∈ F (ω) m− a.e.}

is non empty.

Theorem 4.3 Let F : Ω → ck(X) be a measurable multifuction such that cl{F (Ω)} = cl{
⋃

ω∈Ω F (ω)}
is a compact subset of X; then SF 6= ∅.

Proof: Since X is separable there exists D = {xn}n such that cl{D} = X. We want to construct
a sequence of simple functions (fp)p such that, for every p ∈ IN and for every ω ∈ Ω,

d(fp(ω), F (ω)) ≤ 1
2p

(3)

‖fp+1(ω)− fp(ω)‖ ≤ 1
2p+1

. (4)
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Consider {xn +X1, xn ∈ D}; by the total boundedness of cl{F (Ω)}, there exists {x0
1, · · · , x0

n0
} ⊂ D

such that ∪n0
j=1(x

0
j + X1) ⊃ cl{F (Ω)}. For every ω ∈ Ω let

j0(ω) = min{j : j ≤ n0, F (ω) ∩ (x0
j + X1) 6= ∅}.

We set f0(ω) = x0
j0(ω). f0 is a measurable simple function: in fact, for every j = 1, · · · , n0

f−1
0 (x0

j ) = {ω ∈ Ω : F (ω) ∩ (x0
j + X1) 6= ∅} \ ∪j−1

k=1{ω ∈ Ω : F (ω) ∩B(x0
k + X1) 6= ∅}.

Consider now {(xn + 2−1X1), xn ∈ D}; analogously to the previous step there exists {x1
1, · · · , x1

n1
}

⊂ D such that ∪n1
j=1(x

1
j + 2−1X1) ⊃ cl{F (Ω)}.

Let Ωi = f−1
0 (x0

i ), for i = 1, · · · , n0. For every ω ∈ Ω there exists i ≤ n0 such that ω ∈ Ωi, so
F (ω) ∩ (x0

i + X1) 6= ∅ and we set:

j1(ω) = min{j : j ≤ n0, F (ω) ∩ (x0
i + X1) ∩B(x1

j + 2−1X1) 6= ∅}.

So, for every ω ∈ Ωi we set f1(ω) = x1
j1(ω). Again f1 is a simple measurable function.

By recurrence we can costruct fn which satisfies (3) and (4). Moreover from (4) we obtain that
(fn)n is uniformly Cauchy in X which is complete. So the limit f of fn exists and f(ω) ∈ F (ω)
since F (ω) is closed. This proves that f is totally measurable and f ∈ SF . Observe that, since f

is the uniform limit of Σ-measurable functions, f is Σ-measurable. 2

Definition 4.4 A multifunction F : Ω → cb(X) is integrably bounded if there exists a non negative
g ∈ L1(Ω,Σ, m, IR+

0 ) such that:

h(F (ω), {0}) ≤ g(ω) m− a.e.

Remark 4.5 If F ∈ TM(Ω, Σ, m, ck(X)) is such that cl{F (Ω)} is a compact subset of X then F

is integrably bounded and hence every totally m-measurable selection f is also m-integrable and
so S1

F is non-empty and uniformly integrable.

5 Comparison between Aumann and Bochner integrals

The notations we shall use here are the same as in Section 3. From now on we suppose that
F ∈ TM(Ω, Σ,m, ck(X)), and cl{F (Ω)} is a compact subset of X.
Let j : TM(Ω, Σ, m,X) → TM(S,Gσ, m,X) be the function defined by

j(f) = f.

We observe that:

Theorem 5.1 Let F be integrably bounded and cl{F (Ω)} compact and f ∈ L1(Ω, Σ,m, x). If for
every α > 0, m({ω ∈ Ω : d(f, F ) ≥ α}) = 0, then f ∈ S1

F
.
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Proof: Let f ∈ L1(Ω, Σ, m, X) be such that for every α > 0, m({ω ∈ Ω : d(f, F ) ≥ α}) = 0. Let
(fn)n be a sequence of simple functions which m-converges to f and (Fn)n a sequence of simple
multifunctions m-converging to F .
Let γn : Ω → IR+

0 be the function defined as follows:

γn(ω) = d(fn(ω), Fn(ω)).

(γn)n is a sequence of simple functions which m-converges to 0; in fact, by (1),

d(fn, Fn) ≤ ‖fn − f‖+ d(f, F ) + h(F, Fn)

and setting, for every α > 0,

An = {ω ∈ Ω : γn(ω) > α}

A
′
n = {ω ∈ Ω : ‖fn(ω)− f(ω)‖ >

α

2
}

A”
n = {ω ∈ Ω : h(Fn(ω), F (ω)) >

α

2
}

we have m(An) ≤ m(A
′
n) + m(A”

n) and so m(An) converges to 0. Using now b) of section 3, (γn)n

m-converges to 0. Whithout loss of generality assume that fn and Fn have the same representation,
namely

fn =
pn∑
i=1

cn
i 1En

i
, Fn =

pn∑
i=1

Cn
i 1En

i
;

since Fn has compact values, for every i = 1, · · · , pn there exists xn
i ∈ Cn

i such that d(cn
i , Cn

i ) =

‖xn
i − cn

i ‖. Let tn =
pn∑
i=1

xn
i 1En

i
. Observe that tn ∈ S1

Fn
and ‖tn − fn‖ = γn. Let

tn =
pn∑
i=1

xn
i 1τ(En

i ), fn =
pn∑
i=1

cn
i 1τ(En

i ).

We have

tn − fn =
pn∑
i=1

(xn
i − cn

i )1En
i
, tn − fn =

pn∑
i=1

(xn
i − cn

i )1τ(En
i ),

and so,

‖tn − fn‖ = ‖tn − fn‖ = ‖tn − fn‖ = γn.

Let now (fnk
)k, (Fnk

)k, (γnk
)k be three subsequences converging respectively to f, F , 0 m-a.e.; we

obtain, again using (1),

d(f, F ) ≤ ‖f − fnk
‖+ ‖fnk

− tnk
‖+ d(tnk

, Fnk
) + h(Fnk

, F ),

so f ∈ S1

F
. 2

Observe that Theorem 5.1 holds in particular for f ∈ S1
F .
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Remark 5.2 If λ is a countably additive measure and G is an integrably bounded, compact convex

valued multifunction, then the Aumann integral (A)−
∫
·
Gdλ is compact and convex (see for

example [12]). So in particular, for G = F and λ = m,

(A)−
∫
·
Fdm =

{∫
·
φdm : φ ∈ S1

F

}
is convex and compact in X.

Corollary 5.3 If F ∈ TM(Ω, Σ,m, ck(X)) and S1
F 6= ∅, then

(A)−
∫

E
Fdm ⊂ (A)−

∫
τ(E)

Fdm = (B)−
∫

τ(E)
Fdm = (B)−

∫
E
Fdm. (5)

Proof: it is a consequence of (c) given in Section 3, Remark 5.2, Theorem 4.5 of [12] and (2).

Now we want to show that every selection of F is the Stone trasform of a function f such that
d(f, F ) is a m-null function in the sense of [9]. To obtain this result we need the completeness of
the space L1(Ω, Σ,m,X). A characterization of the completeness of L1(Ω,Σ, m,X) is given in [11],
and related results can be found in [4].

Theorem 5.4 Suppose that L1(Ω, Σ,m,X) is complete. Let φ ∈ S1

F
, then there exists a function

f ∈ L1(Ω,Σ, m,X) such that f = φ and, for every α > 0, m({ω ∈ Ω : d(f(ω), F (ω)) ≥ α}) = 0.

Proof: Let (φn)n be a defining sequence for φ.

φn =
pn∑

j=1

x
(n)
j 1(n)

Ej
, E

(n)
j ∈ Gσ

for every j = 1, · · · , pn.
G is dense in Gσ with respect to the (FN)-pseudometric defined by:

dm(E, F ) = m(E∆F ),

for every E,F ∈ Gσ. Then, for every ε > 0 , and for every E ∈ Gσ, there exists A ∈ G such that
m(A∆E) ≤ ε.
Let εn ↓ 0 and let n ∈ IN be fixed; for every j = 1, · · · , pn there exists A

(n)
j ∈ G such that

m(A(n)
j ∆E

(n)
j ) ≤ εn∑pn

i=1 ‖x
(n)
i ‖

.

Let gn =
∑pn

i=1 x
(n)
i 1(n)

Ai
; gn is G-simple and∫
S
‖gn − φn‖dm ≤

pn∑
i=1

‖x(n)
i ‖m(A(n)

i ∆E
(n)
i ) ≤ εn. (6)
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Let B
(n)
i = τ−1(A(n)

i ) and γn =
∑pn

i=1 x
(n)
i 1(n)

Bi
. So gn is the Stone transform of γn.

Since (φn)n is defining we find from (6):

lim
n

∫
S
‖gn − φ‖dm = 0,

namely gn converges to φ in L1(S,Gσ, m,X). So, (γn)n is Cauchy in L1(Ω,Σ, m,X). Since m is
self-separable then L1(Ω, Σ, m,X) is complete and so there exists a function f ∈ L1(Ω, Σ, m,X)
such that γn converges to f in L1(Ω, Σ, m,X). It follows from Remark 2.1 that f is Σ-measurable.
The sequence (gn)n converges to φ in L1 and thus f = φ m-a.e..
It only remains to prove that for every α > 0 m({ω ∈ Ω : d(f, F ) ≥ α}) = 0.

Let (Fn)n be a defining sequence for F ; then (Fn)n is G-measurable and defining for F .
By the countable additivity of m, we can consider two subsequences (gnk

)k, (Fnk
)k of (gn)n and

(Fn)n respectively which converge to f and F , m-a.e.
Let now k ∈ IN be fixed; we can represent (gnk

)k and (Fnk
)k with the same G-measurable decom-

position of S

(gnk
)k =

pnk∑
i=1

x
(nk)
i 1

τ(E
(nk)

i )
(Fnk

)k =
pnk∑
i=1

C
(nk)
i 1

τ(E
(nk)

i )
.

Let c
(nk)
i ∈ C

(nk)
i such that ‖x(nk)

i − c
(nk)
i ‖ = d(x(nk)

i , C
(nk)
i ), and tnk

=
∑pnk

i=1 c
(nk)
i 1

τ(E
(nk)

i )
. Then

‖tnk
− gnk

‖ = d(gnk
, Fnk

) whence

lim
k
‖tnk

− f‖ = 0 m− a.e..

Then, for every α > 0

lim
k

m(‖tnk
− f‖ ≥ α) = 0.

Let σnk
=

∑pnk
i=1 c

(nk)
i 1

E
(nk)

i

. By b) of section 3, limk m(‖σnk
− f‖ ≥ α) = 0 for every α > 0.

Since

d(f, F ) ≤ ‖f − σnk
‖+ d(σnk

, F ) ≤ ‖f − σnk
‖+ h(Fnk

, F )

we have

m(d(f, F ) ≥ α) ≤ lim
k

[
m(‖f − σnk

‖ ≥ α

2
) + m(h(Fnk

, F ) ≥ α

2
)
]

= 0, ∀α > 0. 2

Proposition 5.5 Let F : Ω → ck(X) be a measurable multifunction and let f : Ω → X be a
Σ-measurable function; then the multifunction Γf : Ω → ck(X) defined by:

Γf (ω) = {x ∈ F (ω) : ‖f(ω)− x‖ = rω}

where rω = d(f(ω), F (ω)), is Σ-measurable.
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Proof: let {φn} be a Castaing representation for F , we observe that:

r(ω) = d(f(ω), F (ω)) = inf
t∈F (ω)

‖f(ω)− t‖ = inf
n
‖f(ω)− φn(ω)‖.

Since for every n ∈ IN ‖f(ω)− φn(ω)‖ is Σ-measurable then d(f, F ) is Σ-measurable too.
Let G(ω) = f(ω) + r(ω)X1 and let {un}n be a dense sequence of X1. {f(ω) + r(ω)un, n ∈ IN} is a
Castaing representation for G and then, by [7] Remark pag. 67, G is measurable.
Since Γf (ω) = F (ω)∩G(ω) we obtain that Γf takes values in ck(X) and moreover, by Proposition
11.5.6 of [18], Γf is measurable. 2

Theorem 5.6 Let F : Ω → ck(X) be a totally measurable, multifunction such that S1
F 6= ∅. Then,

for every E ∈ Σ,

(A)−
∫

E
Fdm = (A)−

∫
τ(E)

Fdm.

Proof: by Theorem 5.1

(A)−
∫

E
Fdm ⊂ (A)−

∫
τ(E)

Fdm.

We now prove the converse inclusion. Let φ ∈ S1

F
, and α > 0 be fixed. By Theorem 5.4 there

exists a Σ-measurable f ∈ L1(Ω, Σ, m, X) such that f = φ and such that f ∈ S1
F+αX1

.
Let Γf be as in Proposition 5.5; since Γf (ω) ⊂ F (ω) then, by Theorem 4.3, Γf admits m-integrable
selections.
If g ∈ S1

Γf
, then g ∈ S1

F and moreover m-a.e. ‖f(ω)− g(ω)‖ = d(f(ω), F (ω)) ≤ α.

So f − g is a null function and for every E ∈ Σ,

∫
E
fdm =

∫
E
gdm. Since g ∈ S1

F then:

∫
τ(E)

φdm =
∫

E
fdm =

∫
E
gdm ∈ (A)−

∫
E
Fdm.

Then we can conclude with our main result, that is:

Theorem 5.7 Let m be a bounded finitely additive measure with L1(Ω, Σ, m,X) complete. If F :
Ω → ck(X) is a totally measurable multifunction such that S1

F 6= ∅ then, for every E ∈ Σ,

(A)−
∫

E
Fdm = (B)−

∫
E
Fdm.
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