International Journal of Pure and Applied Mathematics

Volume 5 No. 1 2003, 11-28

MULTIVALUED INTEGRAL OF NON CONVEX INTEGRANDS

Anna Martellotti ${ }^{1}$, Anna Rita Sambucini ${ }^{2}$
${ }^{1}$ Dept. of Mathematics and Inform. 1, Via Vanvitelli - 06123 Perugia, Italy e-mail: amart@dipmat.unipg.it
${ }^{2}$ Dept. of Mathematics and Inform. 1, Via Vanvitelli - 06123 Perugia, Italy e-mail: matears1@unipg.it

Abstract

We study here the convexity of the Aumann integral for suitable multifunctions with values in the closed subsets of an infinite dimensional spaces.

1991 AMS Subj. Classification: 28B20, 26E25, 46B20, 54C60
Key words: Aumann integral, countably additive measures, selections, Liapounov measures.

1. Introduction

In the study of atomless economies an important role is played by the convexity and the closure of the Aumann integral of a multifunction of the form

$$
\begin{equation*}
F(\omega)=(\Gamma(\omega)-e(\omega)) \cup\{0\} \tag{1}
\end{equation*}
$$

where e is an integrable vector function, Γ a suitable multifunction with closed and convex values.
(c) 2003 Academic Publications

The Liapounov property of the Aumann integral is well known in the finitely dimensional model, see for example Hildebrand [8]; but in the infinite dimensional case the Aumann integral may lack both these properties. An example is due to A . Rustichini and N . Yannelis who take an l_{2}-valued multifunction of the type $F(t)=\{0, u(t)\}, t \in[0,2 \pi]$ where u is that of Diestel, Uhl [6, Example IX.2].

In this paper we shall consider a suitable class of integrable multifunctions of type (1), which will turn out to have convex Aumann integral. This will be done in the countably additive case; in Martellotti and Sambucini [12] the finitely additive case has been considered.
X will be a reflexive separable Banach space, and the class that we consider is that of multifunctions of the type (1) where $\Gamma=\sum_{i=1}^{p} C_{i} 1_{E_{i}}$ is an X-valued simple multifunction with closed and convex values and e is a Bochner integrable function which admits a Liapounov indefinite integral.

The idea of dividing the space of traders Ω into a finite decomposition $\left(E_{1}, \ldots, E_{p}\right)$ appears for instance in Basile and Graziano [1]. There the authors give the following motivation: "an istitutional coalition structure is imposed to the society in the form of restricted set of coalitions: the only admissible coalitions are those belonging to the given structure", the motivation is that "in the real economic activity the lack of communication and information among traders and the cost of transactions restrict the set of coalitions that are going to form".
The kind of economic application that we have in mind is that of a "simplified economic model": namely the market Ω is divided into a finite decomposition $\left(E_{1}, \ldots, E_{p}\right)$ and the traders in each E_{i} share, indipendently of their welfare, the same preferences. This has a very clear economic interpretation.

2. Preliminaries and definitions

Let Ω be a set, Σ a σ-algebra of subsets of Ω and $\mu: \Sigma \rightarrow[0,+\infty[$ a bounded non atomic measure. Let X be a reflexive, separable Banach space. With X^{*} we denote its topological dual and with X_{1}, X_{1}^{*} the unit balls of X and X^{*}
respectively. We denote by X_{w} the space X equipped with its weak topology. We denote by $L_{\mu}^{1}(X)$ the space of Bochner integrable functions f. When $X=\mathbb{R}$ we shall simply write L_{μ}^{1}.

Definition 2.1 A vector measure $m: \Sigma \rightarrow X$ is called a Liapounov measure if, for every $E \in \Sigma, m\left(\Sigma_{E}\right)=\{m(A), A \in \Sigma \cap E\}$ is convex and weakly compact for every $E \in \Sigma$. Since we have assumed that X is a reflexive Banach space it is enough to assume that $m\left(\Sigma_{E}\right)$ is closed and convex for every $E \in \Sigma$. If, for every $E \in \Sigma, m\left(\Sigma_{E}\right)$ is only convex, we will say that m is a convex measure.
We shall denote by $c f(X)$ the family of non empty, convex, closed subsets of X and by $\operatorname{cwk}(X)$ the family of non empty, convex, weakly compact subsets of X.
A multifunction $F: \Omega \rightarrow 2^{X} \backslash\{\emptyset\}$ is said to be Effros measurable (measurable) if for every closed subset of X, C

$$
F^{-}(C)=\{\omega \in \Omega: F(\omega) \cap C \neq \emptyset\} \in \Sigma .
$$

A multifunction $F: \Omega \rightarrow 2^{X} \backslash\{\emptyset\}$ is said to be integrably bounded if there exists $g \in L_{\mu}^{1}$ such that, for almost every $\omega \in \Omega$

$$
\|x\| \leq g(\omega), \text { for every } x \in F(\omega)
$$

We denote by S_{F}^{1} the set of all Bochner integrable selections of F, namely

$$
S_{F}^{1}=\left\{f \in L_{\mu}^{1}(X): f(\omega) \in F(\omega) \quad \mu \text { - almost everywhere }\right\} .
$$

If F is a measurable multifunction, and $S_{F}^{1} \neq \emptyset$, then the Aumann integral (shortly (A)-integral) of F is given by

$$
(A)-\int F d \mu=\left\{\int f d \mu, \quad \text { for every } f \in S_{F}^{1}\right\}
$$

Definition 2.2 A map $M: \Sigma \rightarrow 2^{X} \backslash\{\emptyset\}$ is called a multimeasure if $M(\emptyset)=\{0\}$ and for every sequence of disjoint sets $E_{i} \in \Sigma$ with $E=\bigcup_{i} E_{i}$,

$$
M(E):=\sum_{i=1}^{\infty} M\left(E_{i}\right)=\left\{x \in X: x=\sum_{i=1}^{\infty} x_{i}, x_{i} \in M\left(E_{i}\right)\right\} .
$$

Given a multimeasure $M: \Sigma \rightarrow 2^{X} \backslash\{\emptyset\}$, a vector measure $m: \Sigma \rightarrow X$ such that $m(E) \in M(E)$ for every $E \in \Sigma$ is called a measure selection of M. The set of all measure selections of M is denoted by S_{M}. M is called perfect if $M(E)=\left\{m(E), m \in S_{M}\right\}$.
Let M be a multimeasure and \mathcal{H} be a family of measure selections of M : we shall say that \mathcal{H} fills out M if $M(E)=\{m(E), m \in \mathcal{H}\}$ for every $E \in \Sigma$.

If we consider a multimeasure $M: \Sigma \rightarrow c w k(X)$ we shall consider the following ranges $R(M)=\{M(E), E \in \Sigma\}$, which is the range in the hyperspace $(c w k(X), h)$, and $R_{X}(M)=\cup_{E \in \Sigma} M(E)$, which is the range in X.

Throughout this paper we will assume always that:

- $\Gamma=\sum_{i=1}^{p} C_{i} 1_{E_{i}}$ is a simple multifunction with values in $c f(X)$ where $\left(E_{1}, \cdots, E_{p}\right)$ is a finite decomposition of Ω (namely the $E_{i}^{\prime} s$ are pairwise disjoint and $\bigcup_{i=1}^{p} E_{i}=\Omega$);
- $e \in L_{\mu}^{1}(X)$ is such that the measure $\lambda(E):=-\int_{E} e d \mu$ is Liapounov;
- $\quad F=G \cup\{0\}=(\Gamma-e) \cup\{0\}$.

3. Properties of the Aumann integral in the countably additive setting

We shall first assume that $0 \notin G(\omega)$, for every $\omega \in \Omega$. This last assumption does not restrict the generality of the problem, as we will see in subsection 3.3.

3.1. Integrands with bounded values

We shall begin considering multifunctions with bounded values; in other words we assume that $C_{i} \in c w k(X) i=1, \ldots, p$. First of all we want to prove that the Aumann integral of $G=\Gamma-e$ is convex and weakly compact. In fact, in general,

Proposition 3.3 If $\Phi: \Omega \rightarrow \operatorname{cwk}(X)$ is a totally measurable integrably bounded multifunction then, for every $E \in \Sigma$,

$$
(A)-\int_{E}(\Phi-e) d \mu=(A)-\int_{E} \Phi d \mu-\int_{E} e d \mu \in c w k(X) .
$$

Proof: it is an easy consequence of the definition and of Byrne's result [2].
Given a multifunction Ψ, we shall denote with $M_{\Psi}: \Sigma \rightarrow 2^{X}$ the map defined by:

$$
M_{\Psi}(E)=(A)-\int_{E} \Psi d \mu
$$

We prove now that:
Proposition 3.4 If $\Gamma: \Omega \rightarrow c w k(X)$ is simple M_{Γ} is a multimeasure and

$$
M_{\Gamma}(E):=\left\{m_{f}(E):=\int_{E} f d \mu, \quad f \in S_{\Gamma}^{1}, f \text { simple }\right\}
$$

Proof: We remember that, since Γ is simple, namely $\Gamma(\omega)=\sum_{i=1}^{p} C_{i} 1_{E_{i}}(\omega)$, by Byrne [2], then it is Aumann and Debreu integrable and

$$
\begin{equation*}
(A)-\int_{E} \Gamma d \mu=(D)-\int_{E} \Gamma d \mu=\sum_{i=1}^{p} C_{i} \mu\left(E \cap E_{i}\right) \tag{2}
\end{equation*}
$$

Then, if $x \in(A)-\int_{E} \Gamma d \mu$ there exist $x_{i} \in C_{i}, i=1, \ldots, p$ such that $x=\sum_{i=1}^{p} x_{i} \mu\left(E \cap E_{i}\right)$. But then, setting $f=\sum_{i=1}^{p} x_{i} 1_{E_{i}}$, it is clear that $f \in S_{\Gamma}^{1}$ and $x=m_{f}(E)$. Therefore

$$
M_{\Gamma}(E) \subset\left\{m_{f}(E)=\int_{E} f d \mu, \quad f \in S_{\Gamma}^{1}, f \text { simple }\right\}
$$

The converse inclusion is obvious. Moreover, via Radström embedding theorem ([13]), since the Debreu integral is countably additive, if $\left(A_{n}\right)_{n}$ is a disjoint sequence of Σ-measurable sets and we denote by A its union then

$$
M_{\Gamma}(A)=(D)-\int_{A} \Gamma d \mu=\sum_{n=1}^{\infty}(D)-\int_{A_{n}} \Gamma d \mu=\sum_{n=1}^{\infty} M_{\Gamma}\left(A_{n}\right)
$$

Remark 3.5 Let \mathcal{H} be the family

$$
\begin{equation*}
\mathcal{H}=\left\{m_{f} \in S_{M_{\Gamma}}: \quad f \in S_{\Gamma}^{1}, f=\sum_{i=1}^{p} x_{i} 1_{E_{i}}, x_{i} \in C_{i}\right\} . \tag{3}
\end{equation*}
$$

Proposition 3.4 says then that \mathcal{H} fills out M_{Γ}.

We prove now the convexity and the closure of the range in X of the multimeasure M_{Γ}.

Proposition 3.6 $R_{X}\left(M_{\Gamma}\right)$ is convex and weakly compact.
Proof: Indeed we shall prove that $R_{X}\left(M_{\Gamma}\right)=\sum_{i=1}^{p} c o\left(\{0\} \cup C_{i}\right) \mu\left(E_{i}\right)$.
Let $K_{i}=c o\left(\{0\} \cup C_{i}\right)$ for $i=1, \ldots, p$. Each K_{i} is weakly compact and convex. If $x \in \sum_{i=1}^{p} c o\left(\{0\} \cup C_{i}\right) \mu\left(E_{i}\right)$ then there exist $x_{i} \in K_{i}, i=1, \ldots, p$, such that $x=\sum_{i=1}^{p} x_{i} \mu\left(E_{i}\right)$. Since $x_{i} \in K_{i}$ there exist $p_{i} \in[0,1]$ and $y_{i} \in C_{i}$ such that $x_{i}=p_{i} y_{i}$. Since μ is Liapounov there exists a measurable set $A_{i} \subseteq E_{i}$ such that $\mu\left(A_{i}\right)=p_{i} \mu\left(E_{i}\right)$. Let now $A=\bigcup_{i=1}^{p} A_{i}$.

$$
\begin{aligned}
x & =\sum_{i=1}^{p} x_{i} \mu\left(E_{i}\right)=\sum_{i=1}^{p} y_{i} p_{i} \mu\left(E_{i}\right)=\sum_{i=1}^{p} y_{i} \mu\left(A \cap E_{i}\right) \in \\
& \in M_{\Gamma}(A) \subset R_{X}\left(M_{\Gamma}\right) .
\end{aligned}
$$

We prove now the converse inclusion. If $x \in R_{X}\left(M_{\Gamma}\right)$ then there exist a set $E \in \Sigma$ and $x_{i} \in C_{i}$ such that $x \in M_{\Gamma}(E)$ and then $x=\sum_{i=1}^{p} x_{i} \mu\left(E \cap E_{i}\right)$. We set

$$
\alpha_{i}=\left\{\begin{array}{ll}
\frac{\mu\left(E \cap E_{i}\right)}{\mu\left(E_{i}\right)} & \text { if } \mu\left(E_{i}\right)>0 ; \\
0 & \text { if } \mu\left(E_{i}\right)=0 ;
\end{array} \quad i=1, \ldots, p\right.
$$

Since $\alpha_{i} \in[0,1]$ and $x_{i} \in C_{i}$, we have that $\alpha_{i} x_{i} \in K_{i}$ and

$$
x=\sum_{i=1}^{p} x_{i} \alpha_{i} \mu\left(E_{i}\right) \in \sum_{i=1}^{p} K_{i} \mu\left(E_{i}\right) .
$$

Therefore the range of M_{Γ} is the direct sum of a finite family of convex weakly compact sets and then it is convex and weakly compact.

We want to obtain now the same result for the multimeasure M_{G}. First of all we need an analogous result for single valued measures. What we prove in the following two results is that the indefinite integral of a vector valued
simple function with respect to a non atomic measure is Liapounov and that the sum of suitable vector valued measures is Liapounov too.

Proposition 3.7 Every simple measure m, that is every indefinite integral of a simple function, is a Liapounov measure.

Proof: Let $f=\sum_{i=1}^{p} x_{i} 1_{E_{i}}$ and $m=m_{f}$. It is enough to prove that $R(m)$ is convex and closed. If $r, s \in R(m)$ then there exist $A, B \in \Sigma$ such that $r=\sum_{i=1}^{p} x_{i} \mu\left(A \cap E_{i}\right)$ and $s=\sum_{i=1}^{p} x_{i} \mu\left(B \cap E_{i}\right)$. For the sake of simplicity we denote by $A_{i}=A \cap E_{i}$, and $B_{i}=B \cap E_{i}$ for $i=1, \ldots, p$. If $\left.t \in\right] 0,1[$, as in Candeloro and Martellotti [3, Lemma 2.2 and Theorem 2.4], for every $A \in \Sigma$, let $\left(A_{t}\right)_{t}$ be such that $\mu\left(A_{t}\right)=t \mu(A), t \in[0,1]$, and let $C_{t}^{i}=\left(A_{i} \backslash B_{i}\right)_{t} \cup\left(A_{i} \cap B_{i}\right) \cup\left(B_{i} \backslash A_{i}\right)_{1-t}$. By construction we have: $C_{t}^{i} \subset E_{i}$ and $\mu\left(C_{t}^{i}\right)=t \mu\left(A_{i}\right)+(1-t) \mu\left(B_{i}\right)$, for every $i=1, \cdots, p$. Let $C_{t}=\bigcup_{i \leq p} C_{t}^{i}$. We have

$$
\begin{aligned}
m\left(C_{t}\right) & =m\left(\bigcup_{i \leq p} C_{t}^{i}\right)=\int_{\cup_{i \leq p} C_{t}^{i}} x_{i} 1_{E_{i}} d \mu=\sum_{i=1}^{p} x_{i} \mu\left(E_{i} \cap C_{t}^{i}\right)= \\
& =\sum_{i=1}^{p} x_{i} \mu\left(C_{t}^{i}\right)=\sum_{i=1}^{p} x_{i}\left[t \mu\left(A_{i}\right)+(1-t) \mu\left(B_{i}\right)\right]= \\
& =t r+(1-t) s .
\end{aligned}
$$

We are now ready to prove the closedness of the range. Let $\left(y_{k}\right)_{k}$ be a sequence in $R(m)$ converging to some y_{0}. Since $y_{k} \in R(m)$ there exists $A_{k} \in \Sigma$ such that $y_{k}=\sum_{i=1}^{p} x_{i} \mu\left(A_{k} \cap E_{i}\right)$, for every $k \in \mathbb{N}$. We denote by A_{k}^{i} the set $A_{k} \cap E_{i}$ and by σ_{k}^{i} the number $\mu\left(A_{k}^{i}\right)$, for $i=1, \ldots, p$ and $k \in \mathbb{N}$. Since μ is a non atomic scalar measure, by Liapounov Theorem, for each $i=1, \ldots, p, \mu\left(\Sigma \cap E_{i}\right)=\left[0, \mu\left(E_{i}\right)\right]$. Hence, with a diagonal process, we can find a subsequence $\sigma_{k_{n}}^{i}$, and p sets $F_{i} \in \Sigma \cap E_{i}, i=1, \ldots, p$ such that

$$
\lim _{k_{n} \rightarrow \infty} \sigma_{k_{n}}^{i}=\mu\left(F_{i}\right) \quad i=1, \ldots, p
$$

Hence, setting $F=\bigcup_{i \leq p} F_{i}$,

$$
\lim _{k \rightarrow \infty} y_{n_{k}}=\sum_{i=1}^{p} x_{i} \mu\left(A_{n}^{i}\right)=m(F) \in R(m) .
$$

Remark 3.8 If m_{1}, m_{2} are simple measures then the measure $\left(m_{1}, m_{2}\right)$ is Liapounov. The proof is similar to previous one.

Theorem 3.9 Let X, Y be two Banach spaces with X satisfying the RNP, μ a non atomic countably additive bounded measure, $f=\sum_{i=1}^{p} x_{i} 1_{E_{i}}$ an Y-valued, simple function, and $n_{2}=\int$. ed μ a X-valued Liapounov measure. Then setting $n_{1}=\int f d \mu$, the range of the pair $\left(n_{1}, n_{2}\right)$ is convex and compact in $Y \times X_{w}$.

Proof: This will be done by readapting some of the arguments of Lindenstrauss's proof of Liapounov Theorem given in Lindenstrauss [11].
Let $\nu=\left|n_{1}\right|+\left|n_{2}\right|$. By Dunford Schwartz [7] Theorem III.2.20, $\left|n_{1}\right|=$ $\int\|f\| d \mu,\left|n_{2}\right|=\int\|e\| d \mu$. Observe that ν is equivalent to μ.
Let $W=\{g: 0 \leq g \leq 1\} \subset L_{\nu}^{\infty}$, and let $T: W \rightarrow Y \times X$ be the map defined by:

$$
T(g)=\left(T_{1}(g), T_{2}(g)\right)=\left(\int_{\Omega} g d n_{1}, \int_{\Omega} g d n_{2}\right) .
$$

W is a w^{*}-compact and convex subset of L_{ν}^{∞}.
Define now $\varphi(\omega):=\sum_{i=1}^{p} c_{i} 1_{E_{i}}(\omega)$ where

$$
c_{i}= \begin{cases}\frac{x_{i}}{\left\|x_{i}\right\|} & \text { if } x_{i} \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Then $\int_{E} \varphi d\left|n_{1}\right|=\sum_{i=1}^{p} c_{i}\left|n_{1}\right|\left(E \cap E_{i}\right)$ and, since $\left|n_{1}\right|(H)=\sum_{i=1}^{p}\left\|x_{i}\right\| \mu\left(H \cap E_{i}\right)$,

$$
\int_{E} \varphi d\left|n_{1}\right|=\sum_{i=1}^{p} \frac{x_{i}}{\left\|x_{i}\right\|}\left\|x_{i}\right\| \mu\left(H \cap E_{i}\right)=\sum_{i=1}^{p} x_{i} \mu\left(E \cap E_{i}\right)=n_{1}(E) ;
$$

therefore $\varphi=\frac{d n_{1}}{d\left|n_{1}\right|}$.

Note that each component $T_{i}:\left(L_{\nu}^{\infty}, w^{*}\right) \rightarrow{ }_{w}$ is continuous since n_{1} is simple, both n_{i} 's are absolutely continuous with respect to μ and X has the RNP.
In fact if $\left(g_{\beta}\right)_{\beta \in \Lambda}$ is a net in L_{ν}^{∞} which is w^{*}-convergent to g and we denote by $\theta_{1}=\frac{d n_{1}}{d\left|n_{1}\right|} \cdot \frac{d\left|n_{1}\right|}{d \nu}$ and $\theta_{2}=-e \cdot \frac{d \mu}{d \nu}$ we have that $\theta_{1} \in L_{\nu}^{1}(Y), \theta_{2} \in L_{\nu}^{1}(X)$, $\theta_{i}=\frac{d n_{i}}{d \nu}$, and for every $x_{1}^{*} \in X^{*}, x_{2}^{*} \in Y^{*}$,

$$
\begin{align*}
& x_{i}^{*} T_{i}\left(g_{\beta}\right)= x_{i}^{*} \int_{\Omega} g_{\beta} d n_{i}=x_{i}^{*} \int_{\Omega} g_{\beta} \theta_{i} d \nu=\int_{\Omega} g_{\beta} x_{i}^{*}\left(\theta_{i}\right) d \nu \rightarrow \\
& \int_{\Omega} g x_{i}^{*}\left(\theta_{i}\right) d \nu=x_{i}^{*} \int_{\Omega} g d n_{i} \quad i=1,2 . \tag{4}
\end{align*}
$$

Then, in $Y \times X$, equipped with the product of the weak topologies, $T(W)$ is compact, and therefore, closed. Moreover $T(W)$ is convex.
We prove now that $T(W)=R\left(n_{1}, n_{2}\right)$, that is for every pair ($\left.a_{1}, a_{2}\right) \in T(W)$ there exists a measurable set U such that $\left(n_{1}(U), n_{2}(U)\right)=\left(a_{1}, a_{2}\right)$.
The set $W_{0}=T^{-1}\left(\left\{\left(a_{1}, a_{2}\right)\right\}\right)$ is convex and w^{*}-compact and hence it has extreme points. So it is enough to prove that if $g \in \operatorname{ext}\left(W_{0}\right)$ then $g=1_{U}$ for some measurable set U. Let $g \in \operatorname{ext}\left(W_{0}\right)$. Assume by contradiction that there exist $\varepsilon>0$ and $Z \in \Sigma$ such that $\mu(Z)>0$ and $\varepsilon \leq g \leq 1-\varepsilon$ on Z. Let $Z_{i}=E_{i} \cap Z$ and I be the the set $I=\left\{i \leq p: \mu\left(Z_{i}\right)>0\right\}$.
Let $i \in I$ be fixed. Since μ is non atomic there exists $A_{i} \subset Z_{i}$ such that $\mu\left(A_{i}\right)>0$ and $\mu\left(Z_{i} \backslash A_{i}\right)>0$. By assumption on n_{2}, there exist $B_{i} \subset A_{i}$, $D_{i} \subset Z_{i} \backslash A_{i}$ such that

$$
n_{2}\left(B_{i}\right)=\frac{1}{2} n_{2}\left(A_{i}\right), \quad n_{2}\left(D_{i}\right)=\frac{1}{2} n_{2}\left(Z_{i} \backslash A_{i}\right) .
$$

Let $s_{i}, t_{i} \in \mathbb{R}$, be such that $s_{i}^{2}+t_{i}^{2}>0,\left|s_{i}\right| \leq \varepsilon,\left|t_{i}\right| \leq \varepsilon$ and $s_{i}\left[\mu\left(A_{i}\right)-2 \mu\left(B_{i}\right)\right]=t_{i}\left[\mu\left(Z_{i} \backslash A_{i}\right)-2 \mu\left(D_{i}\right)\right]$. Let

$$
h_{i}=\left\{\begin{array}{lr}
s_{i}\left[1_{A_{i}}-2 \cdot 1_{B_{i}}\right]-t_{i}\left[1_{Z_{i} \backslash A_{i}}-2 \cdot 1_{D_{i}}\right] & i \in I \\
0 & \text { otherwise },
\end{array}\right.
$$

and $h=\sum_{i=1}^{p} h_{i} 1_{E_{i}}$. Then easily $\int_{\Omega} h d n_{j}=0, j=1,2$ and hence $g \pm h \in \operatorname{ext}\left(W_{0}\right)$, which is a contradiction.

This shows that $R\left(n_{1}, n_{2}\right)$ is convex and compact in $Y_{w} \times X_{w}$. We shall now prove that it is indeed compact in $Y \times X_{w}$. Let $\left(A_{\beta}\right)_{\beta}$ be a net in Σ; then, by the $Y_{w} \times X_{w}$-compactness of $R\left(n_{1}, n_{2}\right)$, without loss of generality, we can assume that $\left(n_{1}\left(A_{\beta}\right), n_{2}\left(A_{\beta}\right)\right) Y_{w} \times X_{w}$-converges to $\left(n_{1}(B), n_{2}(B)\right)$ for some measurable set B. From the strong compactness of $R\left(n_{1}\right)$ in Y, for some subnet we should have $n_{1}\left(A_{\beta_{i}}\right)$ strongly converges to $n_{1}(B)$, and therefore the subnet $\left(n_{1}\left(A_{\beta_{i}}\right), n_{2}\left(A_{\beta_{i}}\right)\right)$ converges to $\left(n_{1}(B), n_{2}(B)\right)$ in $Y \times X_{w}$.

A useful consequence of the previous results is the following:
Corollary $3.10 M_{\Gamma}$ and M_{G} are Liapounov measures in $(c w k(X), h)$.
Proof: Γ, M_{Γ}, G and M_{G} take values in the hyperspace $(c w k(X), h)$ which can be embedded, thanks to the Radström Embedding Theorem, in a suitable Banach space $(Y,\|\cdot\|)$ in such a way that the embedding is isometric. Using this fact the multifunctions Γ and G can be viewed as single valued functions in $(Y,\|\cdot\|)$.
In Proposition 3.4 it was proved that M_{Γ} is a multimeasure. For what concerns M_{G}, by Propositions 3.3 and 3.4, if $\left(A_{n}\right)_{n}$ is a sequence of pairwise disjoint Σ-measurable sets and $A=\bigcup_{n} A_{n}$ then

$$
\begin{aligned}
M_{G}(A) & =M_{\Gamma}(A)-\int_{A} e d \mu=\sum_{n=1}^{\infty}\left[M_{\Gamma}\left(A_{n}\right)-\int_{A_{n}} e d \mu\right]= \\
& =\sum_{n=1}^{\infty} M_{G}\left(A_{n}\right)
\end{aligned}
$$

Then $M_{\Gamma}, M_{G}: \Sigma \rightarrow Y$ satisfy Proposition 3.7 and Theorem 3.9 respectively.

We are interested in the convexity and the closure of $R_{X}\left(M_{G}\right)$ in X, and not only that of $R\left(M_{G}\right)$.

Remark 3.11 Since Σ is a σ-algebra and X is a reflexive Banach space every vector measure $m: \Sigma \rightarrow X$ is closed in the sense of Kluvanek and

Knowles [9] (Theorem IV.7.1 of [9]). (For the definition of closedness see subsection IV. 2 of [9].)

Lemma 3.12 (Lemma 7 of [10]) Let M be a perfect multimeasure. Suppose that $S(M)$ contains a family \mathcal{H} consisting of convex measures such that \mathcal{H} fills out M and for any $m_{1}, m_{2} \in \mathcal{H}$, the measure $\left(m_{1}, m_{2}\right)$ is convex. Then $R_{X}(M)$ is convex.

Theorem 3.13 (Theorem V.1.1 of [9]) If $m: \Sigma \rightarrow X$ is a closed vector measure the following properties are equivalent:
(3.13.1) for every $E \notin \mathcal{N}(m)$, there exists a bounded, measurable scalar function s not vanishing on E with respect to m such that $\int_{E} s d m=0$;
(3.13.2) m is a Liapounov measure.

Using Lemma 3.12 and Theorem 3.13 we are able to prove that:
Theorem 3.14 If for every $\omega \in \Omega, 0 \notin G(\omega)$ then $R_{X}\left(M_{G}\right)$ is convex.
Proof: By Proposition 3.4 and since $G=\Gamma-e, M_{G}$ is a perfect multimeasure and the family $\widetilde{\mathcal{H}}=\{m+\lambda, \quad m \in \mathcal{H}\}$, where \mathcal{H} is given in (3), fills out M_{G}. By Theorem 3.9, (m, λ) is Liapounov for every $m \in \mathcal{H}$ and by the continuity of the sum the same is true for $(m+\lambda)$.
Using Lemma 3.12 it is enough to prove the convexity of $\left(m_{1}+\lambda, m_{2}+\lambda\right)$ for every pair of measures in $\widetilde{\mathcal{H}}$. By Remark $3.11\left(m_{1}+\lambda, m_{2}+\lambda\right)$ is closed and, by Theorem 3.13, it is enough to prove the statement (3.13.1) for every pair $\left(m_{1}+\lambda, m_{2}+\lambda\right)$.
If $E \notin \mathcal{N}\left(m_{1}+\lambda, m_{2}+\lambda\right)$, then $E \notin \mathcal{N}\left(m_{1}+\lambda\right)$ or $E \notin \mathcal{N}\left(m_{2}+\lambda\right)$.
So there are just three alternatives.
If $E \notin \mathcal{N}\left(m_{1}+\lambda\right)$ and $E \in \mathcal{N}\left(m_{2}+\lambda\right)$ there exists a bounded, measurable scalar function s_{1} which is not $\left(m_{1}+\lambda\right)$-null and such that $\int_{E} s_{1} d\left(m_{1}+\lambda\right)=0$. As $\left|m_{2}+\lambda\right|(E)=0$ clearly

$$
\int_{E} s_{1} d\left(m_{1}+\lambda, m_{2}+\lambda\right)=\left(\int_{E} s_{1} d\left(m_{1}+\lambda\right), \int_{E} s_{1} d\left(m_{2}+\lambda\right)\right)=(0,0) .
$$

Obviously s_{1} is not ($m_{1}+\lambda, m_{2}+\lambda$)-null on E. Analogously one treats the case $E \in \mathcal{N}\left(m_{1}+\lambda\right)$ and $E \notin \mathcal{N}\left(m_{2}+\lambda\right)$.
We have to check now the case $E \notin \mathcal{N}\left(m_{1}+\lambda\right)$ and $E \notin \mathcal{N}\left(m_{2}+\lambda\right)$. We remember that

$$
\begin{aligned}
\left(m_{1}+\lambda\right)(E) & =\sum_{k=1}^{p}\left[x_{k} \mu\left(E \cap E_{k}\right)+\lambda\left(E \cap E_{k}\right)\right] \\
\left(m_{2}+\lambda\right)(E) & =\sum_{k=1}^{p}\left[y_{k} \mu\left(E \cap E_{k}\right)+\lambda\left(E \cap E_{k}\right)\right] .
\end{aligned}
$$

If $E \notin \mathcal{N}\left(m_{1}+\lambda\right)$ since $m_{1}+\lambda \ll \mu, E \notin \mathcal{N}(\mu)$. Therefore there should exist $k \in\{1, \ldots, p\}$ such that $\mu\left(E \cap E_{k}\right) \neq 0$. From (3.13.1) there exists a bounded measurable scalar function s which is not μ-null but $\int_{E \cap E_{k}} s d \mu=0$. Hence

$$
\int_{E \cap E_{k}} s d m_{1}=x_{k} \int_{E \cap E_{k}} s d \mu=0 ; \quad \int_{E \cap E_{k}} s d m_{2}=y_{k} \int_{E \cap E_{k}} s d \mu=0 .
$$

Moreover

$$
\int_{E \cap E_{k}} s d \lambda=\int_{E \cap E_{k}} s e d \mu=0 ;
$$

in fact, by Lebesgue's convergence theorem,

$$
\left|\int_{E \cap E_{k}} \operatorname{sed} \mu\right|=\lim _{n \rightarrow \infty}\left|\int_{E \cap E_{k}} s e_{n} d \mu\right| \leq \lim _{n \rightarrow \infty}\left\|e_{n}\right\|_{\infty}\|s\|_{1}=0
$$

where $e_{n}=e \cdot 1_{\left\{\omega:\|e(\omega)\|_{X} \leq n\right\}}$. Then we have that:

$$
\int_{E \cap E_{k}} s d\left(m_{1}+\lambda, m_{2}+\lambda\right)=(0,0) .
$$

Let A be the support set of s in $E \cap E_{k}$. If s were $\left(m_{1}+\lambda\right)$-null then we should have

$$
\left|m_{1}+\lambda\right|(A)=\int_{A}\left\|x_{k}-e(\omega)\right\| d \mu=0
$$

whence $\left\|x_{k}-e(\omega)\right\|=0 \mu$-almost everywhere, that is $e(\omega)=x_{k} \in C_{k}=\Gamma(\omega)$, μ-a.e. in A. This means that $0 \in G(\omega)=\Gamma(\omega)-e(\omega) \mu$-a.e. in A, contradiction. So s is not $\left(m_{1}+\lambda\right)$-null in E and then it cannot be $\left(m_{1}+\lambda, m_{2}+\lambda\right)$-null in the same set. Then, applying Lemma 3.12, the convexity follows.

Since X is reflexive and separable, the weak topology of X induced on any ball αX_{1} is metrizable, by means of the metric

$$
\rho(x, y)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{\left|x_{n}^{*}(x-y)\right|}{1+\left|x_{n}^{*}(x-y)\right|}
$$

where $\left\{x_{n}^{*}, n \in \mathbb{N}\right\}$ is a fixed dense subset of X_{1}^{*}.
Therefore the Hausdorff topology on $c w k\left(\alpha X_{1}\right)$ defined by means of the weak topology of αX_{1}, coincides with the Hausdorff metric topology h_{ρ} induced by ρ (Christensen [5] pag. 52).
Since $\rho(x-y) \leq\|x-y\|$, for every pair of bounded sets $A, B \subset X$

$$
\begin{equation*}
h_{\rho}(A, B) \leq h(A, B) \tag{5}
\end{equation*}
$$

We remind a result due to Christensen, in the formulation that we shall need. Afterwords

Theorem 3.15 (3.1 of [5]) Let $k\left(\alpha X_{1}\right)$ be the hyperspace of compact subset of αX_{1}, equipped with the Hausdorff topology. A closed set \mathcal{R} in $k\left(\alpha X_{1}\right)$ is compact if and only if the set $\cup_{K \in \mathcal{R}} K$ is compact in the space αX_{1}.

Theorem 3.16 $R_{X}\left(M_{G}\right)$ is weakly compact.

Proof: Thanks to Theorem 3.15 it is enough to prove that $R\left(M_{G}\right)$ is compact in $\left(c w k\left(\alpha X_{1}\right), h_{\rho}\right)$ where $\alpha=\mu(\Omega) \cdot \max _{i=1, \ldots, n} h\left(C_{i},\{0\}\right)+r$ and r is a positive number such that $R(\lambda) \subset r X_{1}$.
In order to prove this we consider the pair $\left(M_{\Gamma}, \lambda\right)$. We have already proved that the first is a simple valued measure in $Y=(c w k(X), h)$ and the second a Liapounov measure in X. Applying Theorem 3.9 to $\left(M_{\Gamma}, \lambda\right)$ we obtain that the range of the pair is compact in $(\operatorname{cwk}(X), h) \times X_{w}$.

We consider now the map $\varphi:(c w k(X), h) \times\left(\alpha X_{1}, \rho\right) \rightarrow(c w k(X), h) \times$ $\left(c w k\left(\alpha X_{1}\right), h_{\rho}\right)$ defined by $\varphi(C, x)=(C,\{x\})$. Since the map $x \mapsto\{x\}$ is an isometry of $\left(\alpha X_{1}, \rho\right)$ into $\left(c w k\left(\alpha X_{1}\right), h_{\rho}\right)$ we obtain the continuity of φ, and therefore $\varphi\left(R\left(M_{\Gamma}, \lambda\right)\right)$ is compact in $(\operatorname{cwk}(X), h) \times\left(c w k\left(\alpha X_{1}\right), h_{\rho}\right)$.
Moreover we can observe that the set $R\left(M_{\Gamma}\right)$ is compact in $(c w k(X), h)$, since it is the convex hull of a finite set; hence, by (5), $R\left(M_{\Gamma}\right)$ is compact in
$\left(c w k(X), h_{\rho}\right)$. Also since $M_{\Gamma} \subset \alpha X_{1}$ for every $E \in \Sigma$, we conclude that $R\left(M_{\Gamma}\right)$ is compact in $\left(c w k\left(\alpha X_{1}\right), h_{\rho}\right)$.
Finally, from (5), $\varphi\left(R\left(M_{\Gamma}, \lambda\right)\right)$ is compact in $\left(\operatorname{cwk}\left(\alpha X_{1}\right), h_{\rho}\right)^{2}$.
Since the sum in $\left(c w k\left(\alpha X_{1}\right), h_{\rho}\right)$ is h_{ρ}-continuous, this shows that $R\left(M_{G}\right)$ is h_{ρ}-compact and concludes the proof.

A useful consequence of the previous theorems is:
Theorem 3.17 Let F be a measurable multifunction defined by $F=G \cup$ $\{0\}=(\Gamma-e) \cup\{0\}$ where Γ takes values in $\operatorname{cwk}(X)$. If $0 \notin G$ then, for every $E \in \Sigma,(A)-\int_{E} F d \mu$ is convex and weakly compact.
Proof: It is enough to prove that

$$
(A)-\int_{E} F d \mu=R_{X}\left(\left.M_{G}\right|_{E \cap \Sigma}\right) .
$$

We shall prove the last equality only in the case $E=\Omega$. Let $z \in(A)-\int_{\Omega} F d \mu$: then there exists $f \in S_{F}^{1}$ such that $\int_{\Omega} f d \mu=z$. Let H be the support of f. The function $f \cdot 1_{H} \in S_{G \cdot 1_{H}}^{1}$ and

$$
z=\int_{\Omega} f d \mu=\int_{H} f d \mu \in(A)-\int_{H} G d \mu=M_{G}(H) .
$$

Conversely, if $z \in M_{G}(K)$ for some measurable set K; then $z \in(A)-\int_{K} G d \mu$. If $s \in S_{G \cdot 1_{K}}^{1}$ is such that $z=\int_{K} s d \mu$, then $z=\int_{\Omega} s 1_{K} d \mu \in(A)-\int_{\Omega} F d \mu$.

3.2. Integrands with unbounded values

We now turn to the general case, namely, assume that $C_{i} \in c f(X), i=$ $1, \ldots, p$ and $0 \notin G$. As before, consider $F=G \cup\{0\}=(\Gamma-e) \cup 0$.

Proposition 3.18 For every $E \in \Sigma,(A)-\int_{E} F d \mu$ is convex and it is the union an increasing sequence of weakly compact sets.

Proof: We denote by Γ_{n} and F_{n} the multifunctions:

$$
\Gamma_{n}(\omega)=\Gamma(\omega) \cap n X_{1}, \quad F_{n}(\omega)=\left(\Gamma_{n}(\omega)-e(\omega)\right) \cup\{0\} .
$$

As Γ is simple, there should exists $\bar{n} \in \mathbb{N}$ such that for every $\omega \in \Omega, \Gamma_{n}(\omega) \neq \emptyset$, for every $n \geq \bar{n}$. We shall consider only $n \geq \bar{n}$.
Moreover, since Γ_{n} takes values in $c w k(X)$ for every $n \in \mathbb{N}$, by Theorem 3.17, $(A)-\int_{E} F_{n} d \mu$ is convex and weakly compact for every $n \geq \bar{n}$.
The assertion will follow from the equality

$$
\begin{equation*}
(A)-\int_{E} F d \mu=\bigcup_{n \geq \bar{n}}(A)-\int_{E} F_{n} d \mu \tag{6}
\end{equation*}
$$

and the obvious inclusion

$$
(A)-\int_{E} F_{n} d \mu \subset(A)-\int_{E} F_{n+1} d \mu .
$$

We will prove the result just for $E=\Omega$. Obviously

$$
\bigcup_{n \geq \bar{n}}(A)-\int_{\Omega} F_{n} d \mu \subset(A)-\int_{\Omega} F d \mu
$$

since $S_{F_{n}}^{1} \subset S_{F}^{1}$ for every $n \geq \bar{n}$. Viceversa let $x \in(A)-\int_{\Omega} F d \mu$; then there exists $f \in S_{F}^{1}$ such that $x=\int_{\Omega} f d \mu$. We denote by S the support of f. Then $x=\int_{S} f d \mu$ and, for every $\omega \in S$ it is $f(\omega) \in \Gamma(\omega)-e(\omega)$. Then clearly $\varphi=f+e \in S_{\Gamma}^{1}$ and

$$
x=\int_{S} \varphi d \mu-\int_{S} e d \mu
$$

In general φ is not simple, but we shall construct a simple function $g \in S_{\Gamma}^{1}$ such that $\int_{S} g d \mu=\int_{S} \varphi d \mu$.
Without loss of generality we can suppose that for every k the set $S \cap E_{k}$ is of positive μ-measure, otherwise let $I=\left\{i_{1}, \ldots, i_{k}\right\}$ be the set of indexes such that $\mu\left(S \cap E_{i}\right)=0$ for $i \in I$,

$$
\widetilde{S}=S \backslash \bigcup_{k \in I}\left(E_{k}: \mu\left(S \cap E_{k}\right)=0\right) ;
$$

then we can replace S with \widetilde{S}. It is:

$$
\int_{S} \varphi d \mu=\sum_{k=1}^{p} \int_{S \cap E_{k}} \varphi d \mu=\sum_{k=1}^{p} \frac{\int_{S \cap E_{k}} \varphi d \mu}{\mu\left(S \cap E_{k}\right)} \mu\left(S \cap E_{k}\right) .
$$

Define

$$
x_{k}=\frac{\int_{S \cap E_{k}} f d \mu}{\mu\left(S \cap E_{k}\right)} \in C_{k}
$$

and set $g(\omega)=x_{k}$ for every $\omega \in S \cap E_{k}$, for $k=1,2, \ldots, p$ and $g(\omega)=0$ otherwise.
Let $n_{x}=\max \left\{\left[\left\|x_{1}\right\|\right], \cdots,\left[\left\|x_{n}\right\|\right], \bar{n}\right\}$. The simple function g is a selection of $\Gamma_{n_{x}}$ and has the same integral of φ. Then $(g-e) 1_{S}$ is an integrable selection of $F_{n_{x}}$. This proves that

$$
(A)-\int_{\Omega} F d \mu \subset \bigcup_{n \geq \bar{n}}(A)-\int_{\Omega} F_{n} d \mu . \square
$$

Remark 3.19 Note also that the equality (6) in the proof has been derived without making use of the hypothesis $0 \notin G$; the last assumption indeed has been used only to apply Theorem 3.17 to each F_{n}.

3.3. Integrands which may contain the origin

We now turn to the general case, namely we consider possibly unbounded integrands which may contain the origin.

Theorem 3.20 Let $F: \Omega \rightarrow c f(X)$ be a measurable multifunction of the following type: $F=(\Gamma-e) \cup\{0\}$, where Γ is simple and takes values in $c f(X)$ and $e \in L_{\mu}^{1}(X)$ has Liapounov indefinite integral. Then, for every $E \in \Sigma$, (A) - $\int_{E} F d \mu$ is convex and it is a countable union of an increasing sequence of weakly compact sets.

Proof: We denote by Ω_{0} the set $\{\omega \in \Omega: 0 \in G(\omega)=\Gamma(\omega)-e(\omega)\}$.
The map $\omega \mapsto d(0, G(\omega))$ is measurable (since G is Effros measurable); then $\Omega_{0}=\{d(G, 0)=0\} \in \Sigma$.
Let F_{n} and Γ_{n} be as in the proof of Theorem 3.18. Note that, since $0 \in F(\omega)$, S_{F}^{1} is a decomposable subset of $L_{\mu}^{1}(X)$. Therefore, for every $E \in \Sigma$, using Remark 3.19, we have:

$$
\begin{aligned}
(A)-\int_{E} F d \mu & =(A)-\int_{E \cap \Omega_{0}} F d \mu+(A)-\int_{E \backslash \Omega_{0}} F d \mu= \\
& =\bigcup_{n \geq \bar{n}}(A)-\int_{E \cap \Omega_{0}} F_{n} d \mu+(A)-\int_{E \backslash \Omega_{0}} F d \mu .
\end{aligned}
$$

Now in every measurable subset of Ω_{0} we have that $F_{n}(\omega)=\Gamma_{n}(\omega)-e(\omega) \in$ $\operatorname{cwk}(X)$. Then, by the main theorem of Byrne [2], $(A)-\int_{E \cap \Omega_{0}} F_{n} d \mu \in c w k(X)$ for every $n \geq \bar{n}$. Again $\left((A)-\int_{E \cap \Omega_{0}} F_{n} d \mu\right)_{n}$ is an increasing sequence, and so its union is convex, while $(A)-\int_{E \backslash \Omega_{0}} F d \mu$ is convex and it is a countable union of an increasing sequence of weakly compact sets by Theorem 3.14. In conclusion $(A)-\int_{E} F d \mu$ is convex, furthermore it is clearly the union

$$
(A)-\int_{E} F d \mu=\bigcup_{n \geq \bar{n}}(A)-\int_{E} F_{n} d \mu
$$

of an increasing sequence of weakly compact sets.

Acknowledgment

This work was partially supported by the G.N.A.M.P.A. of C.N.R.
The Authors would like to thank Professors Achille Basile and Maria Gabriella Graziano for the helpful discussion and their suggestions about the economic motivation of the obtained results.

References

[1] A. Basile and M.G. Graziano Restricted coalition formation mechanism in finitely additive economies, preprint 2001.
[2] C. L. Byrne Remarks on the Set-Valued Integrals of Debreu and Aumann,J. Math. Anal. Appl. 62 (1978) 243-246.
[3] D. Candeloro and A. Martellotti Sul rango di una massa vettoriale, Atti Sem. Mat. Fis. Univ. Modena XXVIII (1979) 102-111.
[4] C. Castaing and M. Valadier Convex analysis and Measurable multifunctions, Lecture Notes in Math. 580 Springer-Verlag (1977).
[5] J. P. R. Christensen Topology and Borel structure, North Holland, Amsterdam, (1974).
[6] J. Diestel and J.J. Uhl Vector measures, Math. Surveys 15, Amer. Math. Soc., Providence 1977.
[7] N. Dunford and J. T. Schwartz Linear Operators Part I, Interscience, New York, (1958).
[8] W. Hildebrand Core and Equilibria of a Large Economy,Princeton University Press, Princeton (1974).
[9] I. Kluvanek and G. Knowles Vector measures and control systems, NorthHolland, Amsterdam (1975).
[10] Le Van Tu The range of a multimeasure, J. Australian Math. Soc. (Serie A) 26 (1978), 442-452.
[11] J. Lindenstrauss A short proof of Liapounoff's convexity theorem, J. of Mathematics and Mechanics, 6 (1966), 971-972.
[12] A. Martellotti and A.R. Sambucini A note on a Liapounov-like theorem for some finitely additive measures ans applications, preprint 2002.
[13] H. Radström An Embedding Theorem for Spaces of Convex Set, Proc. Amer. Math. Soc. 3 (1952), 165-169.

