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1. Introduction

In the study of atomless economies an important role is played by the convexity

and the closure of the Aumann integral of a multifunction of the form

F (ω) = (Γ(ω)− e(ω)) ∪ {0} (1)

where e is an integrable vector function, Γ a suitable multifunction with closed

and convex values.
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The Liapounov property of the Aumann integral is well known in the

finitely dimensional model, see for example Hildebrand [8]; but in the infi-

nite dimensional case the Aumann integral may lack both these properties.

An example is due to A. Rustichini and N. Yannelis who take an l2-valued

multifunction of the type F (t) = {0, u(t)}, t ∈ [0, 2π] where u is that of Dies-

tel,Uhl [6, Example IX.2].

In this paper we shall consider a suitable class of integrable multifunctions

of type (1), which will turn out to have convex Aumann integral. This will

be done in the countably additive case; in Martellotti and Sambucini [12] the

finitely additive case has been considered.

X will be a reflexive separable Banach space, and the class that we consider

is that of multifunctions of the type (1) where Γ =
∑p

i=1 Ci1Ei
is an X-valued

simple multifunction with closed and convex values and e is a Bochner inte-

grable function which admits a Liapounov indefinite integral.

The idea of dividing the space of traders Ω into a finite decomposition

(E1, . . . , Ep) appears for instance in Basile and Graziano [1]. There the authors

give the following motivation: ”an istitutional coalition structure is imposed to

the society in the form of restricted set of coalitions: the only admissible coali-

tions are those belonging to the given structure”, the motivation is that ”in

the real economic activity the lack of communication and information among

traders and the cost of transactions restrict the set of coalitions that are going

to form”.

The kind of economic application that we have in mind is that of a ”simplified

economic model”: namely the market Ω is divided into a finite decomposition

(E1, . . . , Ep) and the traders in each Ei share, indipendently of their welfare,

the same preferences. This has a very clear economic interpretation.

2. Preliminaries and definitions

Let Ω be a set, Σ a σ-algebra of subsets of Ω and µ : Σ → [0, +∞[ a bounded

non atomic measure. Let X be a reflexive, separable Banach space. With X∗

we denote its topological dual and with X1, X
∗
1 the unit balls of X and X∗
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respectively. We denote by Xw the space X equipped with its weak topology.

We denote by L1
µ(X) the space of Bochner integrable functions f . When

X = IR we shall simply write L1
µ.

Definition 2.1 A vector measure m : Σ → X is called a Liapounov mea-

sure if, for every E ∈ Σ, m(ΣE) = {m(A), A ∈ Σ ∩ E} is convex and weakly

compact for every E ∈ Σ. Since we have assumed that X is a reflexive Banach

space it is enough to assume that m(ΣE) is closed and convex for every E ∈ Σ.

If, for every E ∈ Σ, m(ΣE) is only convex, we will say that m is a convex

measure.

We shall denote by cf(X) the family of non empty, convex, closed subsets of

X and by cwk(X) the family of non empty, convex, weakly compact subsets

of X.

A multifunction F : Ω → 2X \{∅} is said to be Effros measurable (measurable )

if for every closed subset of X, C

F−(C) = {ω ∈ Ω : F (ω) ∩ C 6= ∅} ∈ Σ.

A multifunction F : Ω → 2X \ {∅} is said to be integrably bounded if there

exists g ∈ L1
µ such that, for almost every ω ∈ Ω

‖x‖ ≤ g(ω), for every x ∈ F (ω).

We denote by S1
F the set of all Bochner integrable selections of F , namely

S1
F = {f ∈ L1

µ(X) : f(ω) ∈ F (ω) µ− almost everywhere}.

If F is a measurable multifunction, and S1
F 6= ∅, then the Aumann integral

(shortly (A)-integral) of F is given by

(A)−
∫

Fdµ =

{∫
fdµ, for every f ∈ S1

F

}
.

Definition 2.2 A map M : Σ → 2X \ {∅} is called a multimeasure if

M(∅) = {0} and for every sequence of disjoint sets Ei ∈ Σ with E =
⋃
i

Ei,

M(E) :=
∞∑
i=1

M(Ei) = {x ∈ X : x =
∞∑
i=1

xi, xi ∈ M(Ei)}.
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Given a multimeasure M : Σ → 2X \ {∅}, a vector measure m : Σ → X such

that m(E) ∈ M(E) for every E ∈ Σ is called a measure selection of M . The

set of all measure selections of M is denoted by SM . M is called perfect if

M(E) = {m(E), m ∈ SM}.
Let M be a multimeasure and H be a family of measure selections of M : we

shall say that H fills out M if M(E) = {m(E), m ∈ H } for every E ∈ Σ.

If we consider a multimeasure M : Σ → cwk(X) we shall consider the fol-

lowing ranges R(M) = {M(E), E ∈ Σ}, which is the range in the hyperspace

(cwk(X), h), and RX(M) = ∪E∈ΣM(E), which is the range in X.

Throughout this paper we will assume always that:

- Γ =
∑p

i=1 Ci1Ei
is a simple multifunction with values in cf(X) where

(E1, · · · , Ep) is a finite decomposition of Ω (namely the E ′
is are pairwise

disjoint and

p⋃
i=1

Ei = Ω);

- e ∈ L1
µ(X) is such that the measure λ(E) := −

∫
E

edµ is Liapounov;

- F = G ∪ {0} = (Γ− e) ∪ {0}.

3. Properties of the Aumann integral in the

countably additive setting

We shall first assume that 0 6∈ G(ω), for every ω ∈ Ω. This last assumption

does not restrict the generality of the problem, as we will see in subsection 3.3.

3.1. Integrands with bounded values

We shall begin considering multifunctions with bounded values; in other

words we assume that Ci ∈ cwk(X) i = 1, . . . , p. First of all we want to prove

that the Aumann integral of G = Γ−e is convex and weakly compact. In fact,

in general,
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Proposition 3.3 If Φ : Ω → cwk(X) is a totally measurable integrably

bounded multifunction then, for every E ∈ Σ,

(A)−
∫

E

(Φ− e)dµ = (A)−
∫

E

Φdµ−
∫

E

edµ ∈ cwk(X).

Proof: it is an easy consequence of the definition and of Byrne’s result [2].

Given a multifunction Ψ, we shall denote with MΨ : Σ → 2X the map defined

by:

MΨ(E) = (A)−
∫

E

Ψdµ.

We prove now that:

Proposition 3.4 If Γ : Ω → cwk(X) is simple MΓ is a multimeasure and

MΓ(E) := {mf (E) :=

∫
E

fdµ, f ∈ S1
Γ, f simple }.

Proof: We remember that, since Γ is simple, namely Γ(ω) =
∑p

i=1 Ci1Ei
(ω),

by Byrne [2], then it is Aumann and Debreu integrable and

(A)−
∫

E

Γdµ = (D)−
∫

E

Γdµ =

p∑
i=1

Ciµ(E ∩ Ei). (2)

Then, if x ∈ (A) −
∫

E

Γdµ there exist xi ∈ Ci, i = 1, . . . , p such that

x =

p∑
i=1

xiµ(E ∩ Ei). But then, setting f =

p∑
i=1

xi1Ei
, it is clear that f ∈ S1

Γ

and x = mf (E). Therefore

MΓ(E) ⊂ {mf (E) =

∫
E

fdµ, f ∈ S1
Γ, f simple }.

The converse inclusion is obvious. Moreover, via Radström embedding theorem

([13]), since the Debreu integral is countably additive, if (An)n is a disjoint

sequence of Σ-measurable sets and we denote by A its union then

MΓ(A) = (D)−
∫

A

Γdµ =
∞∑

n=1

(D)−
∫

An

Γdµ =
∞∑

n=1

MΓ(An). 2

Remark 3.5 Let H be the family

H = {mf ∈ SMΓ
: f ∈ S1

Γ, f =

p∑
i=1

xi1Ei
, xi ∈ Ci}. (3)

Proposition 3.4 says then that H fills out MΓ.

15



We prove now the convexity and the closure of the range in X of the

multimeasure MΓ.

Proposition 3.6 RX(MΓ) is convex and weakly compact.

Proof: Indeed we shall prove that RX(MΓ) =

p∑
i=1

co ({0} ∪ Ci) µ(Ei).

Let Ki = co ({0} ∪ Ci) for i = 1, . . . , p. Each Ki is weakly compact and convex.

If x ∈
p∑

i=1

co ({0} ∪ Ci) µ(Ei) then there exist xi ∈ Ki, i = 1, . . . , p, such that

x =

p∑
i=1

xiµ(Ei). Since xi ∈ Ki there exist pi ∈ [0, 1] and yi ∈ Ci such that

xi = piyi. Since µ is Liapounov there exists a measurable set Ai ⊆ Ei such

that µ(Ai) = piµ(Ei). Let now A =

p⋃
i=1

Ai.

x =

p∑
i=1

xiµ(Ei) =

p∑
i=1

yipiµ(Ei) =

p∑
i=1

yiµ(A ∩ Ei) ∈

∈ MΓ(A) ⊂ RX(MΓ).

We prove now the converse inclusion. If x ∈ RX(MΓ) then there exist a set

E ∈ Σ and xi ∈ Ci such that x ∈ MΓ(E) and then x =

p∑
i=1

xiµ(E ∩ Ei). We

set

αi =


µ(E ∩ Ei)

µ(Ei)
if µ(Ei) > 0;

0 if µ(Ei) = 0;
i = 1, . . . , p.

Since αi ∈ [0, 1] and xi ∈ Ci, we have that αixi ∈ Ki and

x =

p∑
i=1

xiαiµ(Ei) ∈
p∑

i=1

Kiµ(Ei).

Therefore the range of MΓ is the direct sum of a finite family of convex weakly

compact sets and then it is convex and weakly compact. 2

We want to obtain now the same result for the multimeasure MG. First

of all we need an analogous result for single valued measures. What we prove

in the following two results is that the indefinite integral of a vector valued
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simple function with respect to a non atomic measure is Liapounov and that

the sum of suitable vector valued measures is Liapounov too.

Proposition 3.7 Every simple measure m, that is every indefinite integral

of a simple function, is a Liapounov measure.

Proof: Let f =

p∑
i=1

xi1Ei
and m = mf . It is enough to prove that R(m)

is convex and closed. If r, s ∈ R(m) then there exist A, B ∈ Σ such that

r =

p∑
i=1

xiµ(A∩Ei) and s =

p∑
i=1

xiµ(B∩Ei). For the sake of simplicity we denote

by Ai = A∩Ei, and Bi = B∩Ei for i = 1, . . . , p. If t ∈]0, 1[, as in Candeloro and

Martellotti [3, Lemma 2.2 and Theorem 2.4], for every A ∈ Σ, let (At)t be such

that µ(At) = tµ(A), t ∈ [0, 1], and let Ci
t = (Ai \Bi)t∪ (Ai∩Bi)∪ (Bi \Ai)1−t.

By construction we have: Ci
t ⊂ Ei and µ(Ci

t) = tµ(Ai) + (1 − t)µ(Bi), for

every i = 1, · · · , p. Let Ct =
⋃
i≤p

Ci
t . We have

m(Ct) = m(
⋃
i≤p

Ci
t) =

∫
∪i≤pCi

t

xi1Ei
dµ =

p∑
i=1

xiµ(Ei ∩ Ci
t) =

=

p∑
i=1

xiµ(Ci
t) =

p∑
i=1

xi[tµ(Ai) + (1− t)µ(Bi)] =

= tr + (1− t)s.

We are now ready to prove the closedness of the range. Let (yk)k be a sequence

in R(m) converging to some y0. Since yk ∈ R(m) there exists Ak ∈ Σ such that

yk =

p∑
i=1

xiµ(Ak ∩ Ei), for every k ∈ IN . We denote by Ai
k the set Ak∩Ei and by

σi
k the number µ(Ai

k), for i = 1, . . . , p and k ∈ IN . Since µ is a non atomic scalar

measure, by Liapounov Theorem, for each i = 1, . . . , p, µ(Σ ∩ Ei) = [0, µ(Ei)].

Hence, with a diagonal process, we can find a subsequence σi
kn

, and p sets

Fi ∈ Σ ∩ Ei, i = 1, . . . , p such that

lim
kn→∞

σi
kn

= µ(Fi) i = 1, . . . , p.
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Hence, setting F =
⋃
i≤p

Fi,

lim
k→∞

ynk
=

p∑
i=1

xiµ(Ai
n) = m(F ) ∈ R(m).2

Remark 3.8 If m1, m2 are simple measures then the measure (m1, m2) is

Liapounov. The proof is similar to previous one.

Theorem 3.9 Let X, Y be two Banach spaces with X satisfying the RNP,

µ a non atomic countably additive bounded measure, f =

p∑
i=1

xi1Ei
an Y -valued,

simple function, and n2 =
∫
· edµ a X-valued Liapounov measure. Then setting

n1 =
∫
· fdµ, the range of the pair (n1, n2) is convex and compact in Y ×Xw.

Proof: This will be done by readapting some of the arguments of Linden-

strauss’s proof of Liapounov Theorem given in Lindenstrauss [11].

Let ν = |n1| + |n2|. By Dunford Schwartz [7] Theorem III.2.20, |n1| =∫
‖f‖dµ, |n2| =

∫
‖e‖dµ. Observe that ν is equivalent to µ.

Let W = {g : 0 ≤ g ≤ 1} ⊂ L∞
ν , and let T : W → Y ×X be the map defined

by:

T (g) = (T1(g), T2(g)) =

(∫
Ω

gdn1,

∫
Ω

gdn2

)
.

W is a w∗-compact and convex subset of L∞
ν .

Define now ϕ(ω) :=

p∑
i=1

ci1Ei
(ω) where

ci =


xi

‖xi‖
if xi 6= 0,

0 otherwise.

Then

∫
E

ϕd|n1| =
p∑

i=1

ci|n1|(E ∩ Ei) and, since |n1|(H) =

p∑
i=1

‖xi‖µ(H ∩ Ei),

∫
E

ϕd|n1| =
p∑

i=1

xi

‖xi‖
‖xi‖µ(H ∩ Ei) =

p∑
i=1

xiµ(E ∩ Ei) = n1(E);

therefore ϕ =
dn1

d|n1|
.
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Note that each component Ti : (L∞
ν , w∗) → ·w is continuous since n1 is

simple, both ni’s are absolutely continuous with respect to µ and X has the

RNP.

In fact if (gβ)β∈Λ is a net in L∞
ν which is w∗-convergent to g and we denote

by θ1 =
dn1

d|n1|
· d|n1|

dν
and θ2 = −e · dµ

dν
we have that θ1 ∈ L1

ν(Y ), θ2 ∈ L1
ν(X),

θi =
dni

dν
, and for every x∗1 ∈ X∗, x∗2 ∈ Y ∗,

x∗i Ti(gβ) = x∗i

∫
Ω

gβdni = x∗i

∫
Ω

gβθidν =

∫
Ω

gβx∗i (θi)dν →∫
Ω

gx∗i (θi)dν = x∗i

∫
Ω

gdni i = 1, 2. (4)

Then, in Y ×X, equipped with the product of the weak topologies, T (W ) is

compact, and therefore, closed. Moreover T (W ) is convex.

We prove now that T (W ) = R(n1, n2), that is for every pair (a1, a2) ∈ T (W )

there exists a measurable set U such that (n1(U), n2(U)) = (a1, a2).

The set W0 = T−1({(a1, a2)}) is convex and w∗-compact and hence it has

extreme points. So it is enough to prove that if g ∈ ext(W0) then g = 1U for

some measurable set U . Let g ∈ ext(W0). Assume by contradiction that there

exist ε > 0 and Z ∈ Σ such that µ(Z) > 0 and ε ≤ g ≤ 1 − ε on Z. Let

Zi = Ei ∩ Z and I be the the set I = {i ≤ p : µ(Zi) > 0}.
Let i ∈ I be fixed. Since µ is non atomic there exists Ai ⊂ Zi such that

µ(Ai) > 0 and µ(Zi \ Ai) > 0. By assumption on n2, there exist Bi ⊂ Ai,

Di ⊂ Zi \ Ai such that

n2(Bi) =
1

2
n2(Ai), n2(Di) =

1

2
n2(Zi \ Ai).

Let si, ti ∈ IR, be such that s2
i + t2i > 0, |si| ≤ ε, |ti| ≤ ε and

si[µ(Ai)− 2µ(Bi)] = ti[µ(Zi \ Ai)− 2µ(Di)]. Let

hi =

{
si[1Ai

− 2 · 1Bi
]− ti[1Zi\Ai

− 2 · 1Di
] i ∈ I

0 otherwise,

and h =

p∑
i=1

hi1Ei
. Then easily

∫
Ω

hdnj = 0, j = 1, 2 and hence g±h ∈ ext(W0),

which is a contradiction.
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This shows that R(n1, n2) is convex and compact in Yw × Xw. We shall

now prove that it is indeed compact in Y × Xw. Let (Aβ)β be a net in Σ;

then, by the Yw × Xw-compactness of R(n1, n2), without loss of generality,

we can assume that (n1(Aβ), n2(Aβ)) Yw×Xw-converges to (n1(B), n2(B)) for

some measurable set B. From the strong compactness of R(n1) in Y , for some

subnet we should have n1(Aβi
) strongly converges to n1(B), and therefore the

subnet (n1(Aβi
), n2(Aβi

)) converges to (n1(B), n2(B)) in Y ×Xw. 2

A useful consequence of the previous results is the following:

Corollary 3.10 MΓ and MG are Liapounov measures in (cwk(X), h).

Proof: Γ, MΓ, G and MG take values in the hyperspace (cwk(X), h) which

can be embedded, thanks to the Radström Embedding Theorem, in a suitable

Banach space (Y, ‖ · ‖) in such a way that the embedding is isometric. Using

this fact the multifunctions Γ and G can be viewed as single valued functions

in (Y, ‖ · ‖).
In Proposition 3.4 it was proved that MΓ is a multimeasure. For what concerns

MG, by Propositions 3.3 and 3.4, if (An)n is a sequence of pairwise disjoint

Σ-measurable sets and A =
⋃
n

An then

MG(A) = MΓ(A)−
∫

A

edµ =
∞∑

n=1

[
MΓ(An)−

∫
An

edµ

]
=

=
∞∑

n=1

MG(An).

Then MΓ, MG : Σ → Y satisfy Proposition 3.7 and Theorem 3.9 respectively. 2

We are interested in the convexity and the closure of RX(MG) in X, and

not only that of R(MG).

Remark 3.11 Since Σ is a σ-algebra and X is a reflexive Banach space

every vector measure m : Σ → X is closed in the sense of Kluvanek and
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Knowles [9] (Theorem IV.7.1 of [9]). (For the definition of closedness see

subsection IV.2 of [9].)

Lemma 3.12 (Lemma 7 of [10]) Let M be a perfect multimeasure. Suppose

that S(M) contains a family H consisting of convex measures such that H
fills out M and for any m1, m2 ∈ H , the measure (m1, m2) is convex. Then

RX(M) is convex.

Theorem 3.13 (Theorem V.1.1 of [9]) If m : Σ → X is a closed vector

measure the following properties are equivalent:

(3.13.1) for every E 6∈ N (m), there exists a bounded, measurable scalar function

s not vanishing on E with respect to m such that

∫
E

sdm = 0;

(3.13.2) m is a Liapounov measure.

Using Lemma 3.12 and Theorem 3.13 we are able to prove that:

Theorem 3.14 If for every ω ∈ Ω, 0 6∈ G(ω) then RX(MG) is convex.

Proof: By Proposition 3.4 and since G = Γ− e, MG is a perfect multimeasure

and the family H̃ = {m+λ, m ∈ H }, whereH is given in (3), fills out MG.

By Theorem 3.9, (m, λ) is Liapounov for every m ∈ H and by the continuity

of the sum the same is true for (m + λ).

Using Lemma 3.12 it is enough to prove the convexity of (m1 + λ, m2 + λ) for

every pair of measures in H̃ . By Remark 3.11 (m1 + λ, m2 + λ) is closed and,

by Theorem 3.13, it is enough to prove the statement (3.13.1) for every pair

(m1 + λ, m2 + λ).

If E 6∈ N (m1 + λ, m2 + λ), then E 6∈ N (m1 + λ) or E 6∈ N (m2 + λ).

So there are just three alternatives.

If E 6∈ N (m1 + λ) and E ∈ N (m2 + λ) there exists a bounded, measurable

scalar function s1 which is not (m1 +λ)-null and such that
∫

E
s1d(m1 +λ) = 0.

As |m2 + λ|(E) = 0 clearly∫
E

s1d(m1 + λ, m2 + λ) =

(∫
E

s1d(m1 + λ),

∫
E

s1d(m2 + λ)

)
= (0, 0).
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Obviously s1 is not (m1 + λ, m2 + λ)-null on E. Analogously one treats the

case E ∈ N (m1 + λ) and E 6∈ N (m2 + λ).

We have to check now the case E 6∈ N (m1 + λ) and E 6∈ N (m2 + λ). We

remember that

(m1 + λ)(E) =

p∑
k=1

[xkµ(E ∩ Ek) + λ(E ∩ Ek)],

(m2 + λ)(E) =

p∑
k=1

[ykµ(E ∩ Ek) + λ(E ∩ Ek)].

If E 6∈ N (m1 +λ) since m1 +λ � µ, E 6∈ N (µ). Therefore there should exist

k ∈ {1, . . . , p} such that µ(E ∩Ek) 6= 0. From (3.13.1) there exists a bounded

measurable scalar function s which is not µ-null but

∫
E∩Ek

sdµ = 0. Hence

∫
E∩Ek

sdm1 = xk

∫
E∩Ek

sdµ = 0;

∫
E∩Ek

sdm2 = yk

∫
E∩Ek

sdµ = 0.

Moreover ∫
E∩Ek

sdλ =

∫
E∩Ek

sedµ = 0;

in fact, by Lebesgue’s convergence theorem,∣∣∣∣∫
E∩Ek

sedµ

∣∣∣∣ = lim
n→∞

∣∣∣∣∫
E∩Ek

sendµ

∣∣∣∣ ≤ lim
n→∞

‖en‖∞‖s‖1 = 0

where en = e · 1{ω:‖e(ω)‖X≤n}. Then we have that:∫
E∩Ek

sd(m1 + λ, m2 + λ) = (0, 0).

Let A be the support set of s in E∩Ek. If s were (m1 +λ)-null then we should

have

|m1 + λ|(A) =

∫
A

‖xk − e(ω)‖dµ = 0,

whence ‖xk − e(ω)‖ = 0 µ-almost everywhere, that is e(ω) = xk ∈ Ck = Γ(ω),

µ-a.e. in A. This means that 0 ∈ G(ω) = Γ(ω)− e(ω) µ-a.e. in A, contradic-

tion. So s is not (m1 +λ)-null in E and then it cannot be (m1 +λ, m2 +λ)-null

in the same set. Then, applying Lemma 3.12, the convexity follows. 2
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Since X is reflexive and separable, the weak topology of X induced on any

ball αX1 is metrizable, by means of the metric

ρ(x, y) =
∞∑

n=1

1

2n

|x∗n(x− y)|
1 + |x∗n(x− y)|

where {x∗n, n ∈ IN} is a fixed dense subset of X∗
1 .

Therefore the Hausdorff topology on cwk(αX1) defined by means of the weak

topology of αX1, coincides with the Hausdorff metric topology hρ induced by

ρ (Christensen [5] pag. 52).

Since ρ(x− y) ≤ ‖x− y‖, for every pair of bounded sets A, B ⊂ X

hρ(A, B) ≤ h(A, B) (5)

We remind a result due to Christensen, in the formulation that we shall need.

Afterwords

Theorem 3.15 (3.1 of [5]) Let k(αX1) be the hyperspace of compact subset

of αX1, equipped with the Hausdorff topology. A closed set R in k(αX1) is

compact if and only if the set ∪
K∈R K is compact in the space αX1.

Theorem 3.16 RX(MG) is weakly compact.

Proof: Thanks to Theorem 3.15 it is enough to prove that R(MG) is compact

in (cwk(αX1), hρ) where α = µ(Ω) · max
i=1,...,n

h(Ci, {0}) + r and r is a positive

number such that R(λ) ⊂ rX1.

In order to prove this we consider the pair (MΓ, λ). We have already proved

that the first is a simple valued measure in Y = (cwk(X), h) and the second

a Liapounov measure in X. Applying Theorem 3.9 to (MΓ, λ) we obtain that

the range of the pair is compact in (cwk(X), h)×Xw.

We consider now the map ϕ : (cwk(X), h) × (αX1, ρ) → (cwk(X), h) ×
(cwk(αX1), hρ) defined by ϕ(C, x) = (C, {x}). Since the map x 7→ {x} is

an isometry of (αX1, ρ) into (cwk(αX1), hρ) we obtain the continuity of ϕ,

and therefore ϕ(R(MΓ, λ)) is compact in (cwk(X), h)× (cwk(αX1), hρ).

Moreover we can observe that the set R(MΓ) is compact in (cwk(X), h), since

it is the convex hull of a finite set; hence, by (5), R(MΓ) is compact in
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(cwk(X), hρ). Also since MΓ ⊂ αX1 for every E ∈ Σ, we conclude that

R(MΓ) is compact in (cwk(αX1), hρ).

Finally, from (5), ϕ(R(MΓ, λ)) is compact in (cwk(αX1), hρ)
2.

Since the sum in (cwk(αX1), hρ) is hρ-continuous, this shows that R(MG) is

hρ-compact and concludes the proof. 2

A useful consequence of the previous theorems is:

Theorem 3.17 Let F be a measurable multifunction defined by F = G∪
{0} = (Γ− e) ∪ {0} where Γ takes values in cwk(X). If 0 6∈ G then, for every

E ∈ Σ, (A)−
∫

E

Fdµ is convex and weakly compact.

Proof: It is enough to prove that

(A)−
∫

E

Fdµ = RX(MG|E∩Σ).

We shall prove the last equality only in the case E = Ω. Let z ∈ (A)−
∫

Ω

Fdµ:

then there exists f ∈ S1
F such that

∫
Ω

fdµ = z. Let H be the support of f .

The function f · 1H ∈ S1
G·1H

and

z =

∫
Ω

fdµ =

∫
H

fdµ ∈ (A)−
∫

H

Gdµ = MG(H).

Conversely, if z ∈ MG(K) for some measurable set K; then z ∈ (A)−
∫

K

Gdµ.

If s ∈ S1
G·1K

is such that z =

∫
K

sdµ, then z =

∫
Ω

s1Kdµ ∈ (A)−
∫

Ω

Fdµ. 2

3.2. Integrands with unbounded values

We now turn to the general case, namely, assume that Ci ∈ cf(X), i =

1, . . . , p and 0 6∈ G. As before, consider F = G ∪ {0} = (Γ− e) ∪ 0.

Proposition 3.18 For every E ∈ Σ, (A)−
∫

E

Fdµ is convex and it is the

union an increasing sequence of weakly compact sets.

Proof: We denote by Γn and Fn the multifunctions:

Γn(ω) = Γ(ω) ∩ nX1, Fn(ω) = (Γn(ω)− e(ω)) ∪ {0}.
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As Γ is simple, there should exists n ∈ IN such that for every ω ∈ Ω, Γn(ω) 6= ∅,
for every n ≥ n. We shall consider only n ≥ n.

Moreover, since Γn takes values in cwk(X) for every n ∈ IN , by Theorem 3.17,

(A)−
∫

E

Fndµ is convex and weakly compact for every n ≥ n.

The assertion will follow from the equality

(A)−
∫

E

Fdµ =
⋃

n ≥ n

(A)−
∫

E

Fndµ. (6)

and the obvious inclusion

(A)−
∫

E

Fndµ ⊂ (A)−
∫

E

Fn+1dµ.

We will prove the result just for E = Ω. Obviously⋃
n ≥ n

(A)−
∫

Ω

Fndµ ⊂ (A)−
∫

Ω

Fdµ

since S1
Fn
⊂ S1

F for every n ≥ n. Viceversa let x ∈ (A) −
∫

Ω

Fdµ; then there

exists f ∈ S1
F such that x =

∫
Ω

fdµ. We denote by S the support of f . Then

x =

∫
S

fdµ and, for every ω ∈ S it is f(ω) ∈ Γ(ω)− e(ω). Then clearly

ϕ = f + e ∈ S1
Γ and

x =

∫
S

ϕdµ−
∫

S

edµ.

In general ϕ is not simple, but we shall construct a simple function g ∈ S1
Γ

such that
∫

S
gdµ =

∫
S

ϕdµ.

Without loss of generality we can suppose that for every k the set S ∩ Ek is

of positive µ-measure, otherwise let I = {i1, . . . , ik} be the set of indexes such

that µ(S ∩ Ei) = 0 for i ∈ I,

S̃ = S \
⋃
k∈I

(Ek : µ(S ∩ Ek) = 0) ;

then we can replace S with S̃. It is:

∫
S

ϕdµ =

p∑
k=1

∫
S∩Ek

ϕdµ =

p∑
k=1

∫
S∩Ek

ϕdµ

µ(S ∩ Ek)
µ(S ∩ Ek).

25



Define

xk =

∫
S∩Ek

fdµ

µ(S ∩ Ek)
∈ Ck,

and set g(ω) = xk for every ω ∈ S ∩ Ek, for k = 1, 2, . . . , p and g(ω) = 0

otherwise.

Let nx = max{[‖x1‖], · · · , [‖xn‖], n}. The simple function g is a selection of

Γnx and has the same integral of ϕ. Then (g − e)1S is an integrable selection

of Fnx . This proves that

(A)−
∫

Ω

Fdµ ⊂
⋃

n ≥ n

(A)−
∫

Ω

Fndµ.2

Remark 3.19 Note also that the equality (6) in the proof has been derived

without making use of the hypothesis 0 6∈ G; the last assumption indeed has

been used only to apply Theorem 3.17 to each Fn.

3.3. Integrands which may contain the origin

We now turn to the general case, namely we consider possibly unbounded

integrands which may contain the origin.

Theorem 3.20 Let F : Ω → cf(X) be a measurable multifunction of the

following type: F = (Γ−e)∪{0}, where Γ is simple and takes values in cf(X)

and e ∈ L1
µ(X) has Liapounov indefinite integral. Then, for every E ∈ Σ,

(A)−
∫

E

Fdµ is convex and it is a countable union of an increasing sequence

of weakly compact sets.

Proof: We denote by Ω0 the set {ω ∈ Ω : 0 ∈ G(ω) = Γ(ω)− e(ω)}.
The map ω 7→ d(0, G(ω)) is measurable (since G is Effros measurable); then

Ω0 = {d(G, 0) = 0} ∈ Σ.

Let Fn and Γn be as in the proof of Theorem 3.18. Note that, since 0 ∈ F (ω),

S1
F is a decomposable subset of L1

µ(X). Therefore, for every E ∈ Σ, using

Remark 3.19, we have:

(A)−
∫

E

Fdµ = (A)−
∫

E∩Ω0

Fdµ + (A)−
∫

E\Ω0

Fdµ =

=
⋃

n ≥ n

(A)−
∫

E∩Ω0

Fndµ + (A)−
∫

E\Ω0

Fdµ.
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Now in every measurable subset of Ω0 we have that Fn(ω) = Γn(ω) − e(ω) ∈
cwk(X). Then, by the main theorem of Byrne [2], (A)−

∫
E∩Ω0

Fndµ ∈ cwk(X)

for every n ≥ n. Again

(
(A)−

∫
E∩Ω0

Fndµ

)
n

is an increasing sequence, and

so its union is convex, while (A) −
∫

E\Ω0

Fdµ is convex and it is a countable

union of an increasing sequence of weakly compact sets by Theorem 3.14.

In conclusion (A)−
∫

E

Fdµ is convex, furthermore it is clearly the union

(A)−
∫

E

Fdµ =
⋃

n ≥ n

(A)−
∫

E

Fndµ

of an increasing sequence of weakly compact sets. 2
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