
Journal of Concrete and Applicable Mathematics

Vol. 3, N. 4, 481-499 (2005)

A note on a Liapounov-like theorem for

some finitely additive measures and

applications

Anna Martellotti – Anna Rita Sambucini

Dipartimento di Matematica e Informatica

1, Via Vanvitelli - 06123-I, Perugia (ITALY)

e-mail: amart@dipmat.unipg.it, matears1@unipg.it

Abstract

We give some results about the convexity of a pair of finitely additive

measures and we apply them to derive the convexity of the Aumann

integral of a suitable multifunction.

1991 AMS Mathematics Subject Classification: 28B20, 26E25, 46B20, 54C60

Key words: Aumann integral, finitely additive measures, selections, convex measures,

Stone isomorphism.

1. Introduction

The classical core-Walras equivalence result [13, Theorem II-2.1] is stated for

a finite-dimensional commodity space, and a space of agents (Ω, Σ, µ) rep-

resented by a non-atomic, positive, countably additive measure space. This

celebrated result of Equilibrium Theory has been extended in several direc-

tions: in particular ([1, 3, 28]) discuss and face the problem of extending it

to the case of strongly non-atomic finitely additive measures. The proof of

the classical result is based upon an idea of Aumann, and makes use of the

geometrical and topological properties of the multivalued integral of a suitable
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multifunction ranging on the commodity space.

The Aumann integral of a Banach-valued multifunction with respect to a

finitely additive measure has been considered in [21] and [22]: in [21] the in-

vestigation concerned integrands with compact and convex values, while [22]

examined the case of integrands with weakly compact and convex values; (see

also [26] for a survey on this topic).

Recently, in [23] we have examined the case of multifunctions of the type

F (ω) = [Γ(ω)− e(ω)] ∪ {0}, (1)

where Γ is a simple multifunction with values in the hyperspace of closed and

convex values of a Banach space X, e ∈ L1
µ(X) and µ is non atomic and

countably additive.

Integrands of this form are those that occur in the core-Walras equivalence:

the assumption on Γ has a meaningful interpretation from the point of view

of the economic model.

The properties of the multivalued integral are usually achieved applying

the classical Liapounov Theorem, together with its infinite dimensional ver-

sions. It is well known that Liapounov Theorem does not extend to finitely

additive measures: weakened forms of it in this more general setting have

been obtained by several authors [18, 6, 7, 29, 8, 2, 3]. A survey of the most

important results can be found in [19].

What we obtained in [23] was that, if e has Liapounov indefinite integral, then

F has convex Aumann integral. The proof of the result was based upon the

following result

Theorem A ([23] Theorem 3.7) Let X and Y be two Banach spaces, with X

satisfying the (RNP), µ : Σ → R+
0 a non-atomic countably additive measure,

f =
n∑

i=1

xi1Ei a Y -valued, simple function, and n2 =
∫
. edµ an X-valued Lia-

pounov measure. Then, setting n1 =
∫
. fdµ, the range of the pair (n1, n2) is

convex and compact in Y ×Xw.

This paper is concerned with the Aumann integral for integrands of the form

(1), but when µ is simply finitely additive: in this setting Theorem A above

is in general false; a counterexample can be obtained by means of the results

in [8].
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However we shall show, through a completely different path, that the convex-

ity of the Aumann integral of F can be reobtained also in the finitely additive

setting, when the commodity space X is a Banach lattice and the indefinite

integral of e satisfies suitable assumptions.

2. Preliminaries and definitions

Throughout this paper X will be a reflexive, separable Banach lattice, X+ its

positive cone. With X∗ we denote the topological dual and with X1, X∗
1 the

unit balls of X and X∗ respectively. We denote by Xw the space X equipped

with its weak topology.

Let Ω be a set, Σ a σ-algebra of subsets of Ω and µ : Σ → [0, +∞[ a finitely

additive bounded measure. In accordance to [11, Chapter III] we denote by

L1
µ(X) the space of X-valued, µ-integrable functions f . When X = R we shall

simply write L1
µ. Throught the paper we will use the symbol µ to denote a

scalar measure, while with the symbol m we denote a vector valued one.

Definition 1 A finitely additive vector measure m : Σ → X is called

Liapounov if, for every E ∈ Σ, m(ΣE) := {m(A), A ∈ Σ ∩ E} is convex

and weakly compact for every E ∈ Σ. Since we have assumed that X is a

reflexive Banach space it is enough to assume that m(ΣE) is bounded, closed

and convex for every E ∈ Σ. If, for every E ∈ Σ, m(ΣE) is only convex, we

will say that m is a convex measure. If, for every E ∈ Σ, there exists B ∈ ΣE

such that m(B) = 1
2m(E), we will say that m is a semiconvex measure.

We remind that for a scalar finitely additive, bounded measure µ : Σ → [0, +∞)

the conceps of strong continuity, semiconvexity and Liapounov are equivalent

[8, 18]; where µ is strongly continuous if for every ε > 0 there exists a finite

decomposition of Ω, Ai ∈ Σ, i = 1, . . . , n such that µ(Ai) ≤ ε.

For a finitely additive vector measure we will denote by |m| the variation

of m, defined for every E ∈ Σ, by:

|m|(E) = sup
Π

∑
Ai∈Π

‖m(Ai)‖
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where the supremum is taken over all the finite decompositions Π of the set

E. Moreover we denote by ‖m‖ its semivariation, given by

‖m‖(E) = sup{|x∗m|(E), x∗ ∈ X∗, ‖x∗‖ ≤ 1}.

It is known that:

sup{‖m(A)‖, A ∈ Σ ∩ E} ≤ ‖m‖(E) ≤ 4 sup{‖m(A)‖, A ∈ Σ ∩ E},

see for example [9, Proposition 1.1].

In the framework of [27] we will make use of the Stone extension; more

precisely G will be the Stone algebra associated to Σ and τ : Σ → G the

Stone isomorphism.

With µ : Gσ → [0, +∞[ we will denote the extended measure of µ, where Gσ

is the σ-algebra generated by G . Observe that if µ is strongly continuous then

its Stone extension µ is non atomic and therefore Liapounov. Moreover, by

[12], if f ∈ L1
µ(X) then it is possible to define its Stone extension as a map

f ∈ L1
µ(X) such that for every E ∈ Σ,∫

E
fdµ =

∫
τ(E)

fdµ (2)

where the left hand side is defined in accordance to [11, Chapter III].

As a consequence if f ∈ L1
µ(X) has Liapounov indefinite integral, its Stone

extension f has the same property. It was also showed in [15] that ‖f‖ =

‖f‖ µ-almost everywhere.

Let m : Σ → X be a vector-valued finitely additive measure. We say that

m is s-bounded if limn→∞ m(An) = 0 for every sequence (An)n of pairwise

disjoint sets in Σ.

Definition 2 A positive finitely additive measure σ : Σ → [0,∞[ is a

control for m if and only if ‖m‖ ∼ σ, in the sense that for every ε > 0 there

exists δ > 0 such that the following implications hold:

• if σ(A) < δ then ‖m‖(A) < ε;

• if ‖m‖(A) < δ then σ(A) < ε.



A note on a Liapounov-like theorem ... 485

A control σ is said to be a Rybakov control if there exists a functional x∗ ∈ X∗

such that σ = |x∗m|.

Remark 1 In [10, 25] the following equivalences were proved: a finitely ad-

ditive measure m is s-bounded if and only if there exists a control for m if and

only if there exists a Rybakov control for m. If m is also of bounded variation

then its variation is equivalent to a Rybakov control for m. The following proof

of this equivalence was communicated to us by one of the referees. If σ = |x∗m|

then obvioulsy σ � |m|. To prove the converse, for every F = {x∗1, . . . , x∗n} in

X∗
1 let ηF :=

∨n
i=1 |x∗i m| be the lattice supremum of the finitely additive mea-

sures |x∗1m|, . . . , |x∗nm|. Since all the ηF are dominated by |m|, then they are

uniformly s-bounded and therefore they are uniformly σ-continuous. Hence the

set-wise supremum |m|(E) = sup{ηF (E), F ⊂ X∗
1 , F finite } is σ-continuous.

So, in this case, ‖m‖ ∼ |m|. Moreover if m and σ are countably additive then

the ε− δ absolute continuity is equivalent to 0− 0 absolute continuity.

3. A Liapounov result

We will now show that if m is X+-valued and s-bounded then it admits a

Rybakov control of the form σ = y∗m for some y∗ ∈ (X∗)+.

Lemma 1 If m : Σ → X+ is a s-bounded finitely additive measure then

there exists y∗ ∈ (X∗)+ such that ‖m‖ ∼ y∗m.

Proof: Let σ = |x∗0m| be a Rybakov control for m, and let y∗ = |x∗0| in the

Banach lattice X∗.

Then, easily, |x∗0(x)| ≤ y∗(x) for every x ∈ X+. Let now ε > 0 be fixed and

consider δ according to the absolute continuity of ‖m‖ with respect to σ; let

A ∈ Σ be such that y∗m(A) ≤ δ; we want to show that ‖m‖(A) ≤ ε. Indeed

let Π be an arbitrary finite partition of A, since m is X+-valued we have∑
B∈Π

|x∗0m(B)| ≤
∑
B∈Π

y∗m(B) = y∗m(A) ≤ δ.

Taking the supremum with respect to Π we have σ(A) ≤ δ, which in turn

yields ‖m‖(A) ≤ ε.

Conversely we prove now that y∗m � ‖m‖. Let ε > 0 be fixed and consider
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δ = ε‖y∗‖−1. If ‖m‖(A) < δ then y∗m(A) ≤ ‖y∗‖ ‖m‖(A) ≤ ‖y∗‖ δ < ε. 2

We will show now that, also in the finitely additive case, if m is of bounded

variation it is possible to find a control which is equivalent to the variation of

m.

Proposition 1 If m : Σ → X+ is a finitely additive measure with bounded

variation, then there exists y∗ ∈ (X∗)+ such that |m| ∼ y∗m.

Proof: By Lemma 1 there exists y∗ ∈ (X∗)+ such that y∗m is a Rybakov

control, namely y∗m ∼ ‖m‖. Since m is of bounded variation then, by Remark

1, ‖m‖ is equivalent to |m|. This concludes the proof. 2

Proposition 2 Let m : Σ → X+ be an s-bounded finitely additive measure.

The following are equivalent:

2.1 m is semiconvex;

2.2 m admits a filtering family, namely for every B ∈ Σ there exists a filter-

ing family {Bt}t∈[0,1] such that

a) B0 = ∅, B1 = B and, if t < t′, then Bt ⊂ Bt′;

b) m(Bt) = tm(B), for every t ∈ [0, 1];

2.3 m is a convex measure.

Proof: 2.1) =⇒ 2.2). Let B ∈ Σ be fixed. With a standard argument it

is possible to construct a filtering sequence (Bt)t, t ∈ Q(2) which satisfies

conditions a) and b), see for example [6, Lemma 2.1]. Let now t ∈]0, 1[ be

fixed, with t 6∈ Q(2), and let (pn)n, (qn)n be two sequences in Q(2) such that

pn ↑ t and qn ↓ t. Put B′
t = ∪nBpn , B′′

t = ∩nBqn and note that B′
t ⊆ B′′

t ;

hence

m(B′
t) ≥ sup

n
m(Bpn) = tm(B) = inf

n
m(Bqn) ≥ m(B′′

t ) ≥ m(B′
t).

Therefore we can choose for instance Bt = ∩nBqn .

2.2) =⇒ 2.3). Let A, B ∈ Σ be fixed and let t ∈ [0, 1]. As in [7, Theorem 2.4]

let

Ct = (B \A)t ∪ (A ∩B) ∪ (A \B)1−t,
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where the families {(B \ A)t}t, {(A \B)t}t are the filtering families for B \ A

and A \B respectively. We have that C0 = A, C1 = B and

m(Ct) = tm(B \A) + m(A ∩B) + (1− t)m(B \A) =

= tm(B) + (1− t)m(A)

2.3) =⇒ 2.1). It is obvious. 2

The equivalence between 2.1) and 2.2) in the finite dimensional case had

already been obtained in [7].

We shall suppose now that m is the indefinite integral of a function e ∈

L1
µ(X+) which satisfies the following assumption:

(h) µ is a control for m.

Remark 2 A sufficient condition for (h) is, for example, the following:

ess inf
Ω
‖e‖ ≥ r > 0 (3)

The assumption (3) has a very meaningful interpretation in the application

to the economic model namely, when e is the initial endowment. We could

label it as minimal entrance feee (m.e.f.) because from the economic point of

view this means that all the consumers, except a set of measure zero, have a

minimal granted support r.

Observe also that m.e.f. assumption is stronger than the condition (h).

For instance, consider in the interval [0, 1], µ : Σ → [0, 1] defined as

µ(A) =
∫

A

1
2
√

x
dx,

where dx is the Lebesgue measure and A is a Lebesgue measurable set and

take e(x) = 2
√

x.

The measure m =
∫

edµ coincides with the Lebesgue measure and admits µ

as a control, but e does not satisfy m.e.f. assumption.

We want now to prove the announced result:
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Proposition 3 Let µ be a s-bounded, non negative, finitely additive mea-

sure, and let e ∈ L1
µ(X+) be such that m =

∫
edµ is semiconvex and µ is a

control for m; then the pairs (m, µ) and (m,xµ) are convex for every x ∈ X.

Proof: The idea of the proof is analogous to that given in [7, Propositions 2.4

and 2.5]. First of all we prove that the pair (m, |m|) is semiconvex.

Let E ∈ Σ be fixed and consider the filtering family {Et}t∈[0,1] associated to m

and E. If |m|(E1/2) = 2−1|m|(E) then we have semiconvexity. Otherwise let,

for example, |m|(E1/2) < 2−1|m|(E) and therefore |m|(E \E1/2) > 2−1|m|(E).

If we apply Proposition 2 to m we find the filtering families {At}t, {Bt}t as-

sociated to E1/2 and E \ E1/2 respectively. We set

Ct = At ∪B1−t.

By construction, for every t

m(Ct) = tm(E1/2) + (1− t)m(E \ E1/2) =
1
2
m(E).

We prove now that |m|(Ct) is a continuous function in t. Let y∗m be a Rybakov

control for m as in Proposition 1. Therefore, for ε > 0 fixed, let δ > 0 be that

of the absolute continuity of |m| with respect to y∗m. Let t, s ∈ [0, 1] be such

that |t− s| y∗m(E) ≤ δ; suppose for instance t < s. The set Ct ∆ Cs is given

by (As \ At) ∪ (B1−t \ B1−s). Since y∗m(Ct ∆ Cs) = |t − s|y∗m(E) < δ we

have that

| |m|(Ct)− |m|(Cs) | ≤ |m|(Ct ∆ Cs) < ε.

Hence, by continuity, as |m|(C0) < 2−1|m|(E), while |m|(C1) > 2−1|m|(E),

there exists t ∈]0, 1[ such that |m|(Ct) = 2−1|m|(E).

Since µ is a control for m this implies also the continuity of t 7→ µ(Ct) and

then the semiconvexity of (m,µ). Finally the convexity of the pair (m,µ)

follows by Proposition 2 if we consider E = X × IR, E+ = X+ × [0,∞[, and

the fact that the finitely additive measure (m, µ) is s-bounded. The convexity

of (m,xµ) is an immediate consequence of the definition and of the convexity

of (m,µ).
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4. Applications to multivalued finitely additive in-

tegral of non convex integrands

Throughout this section, and similarly as in [23], we will adopt the following

notations:

(i) (Ω, Σ) is a measurable space and µ : Σ → [0,∞[ a s-bounded finitely

additive measure which is also strongly continuous.

(ii) (cf(X), h) and (cwk(X), h) are the families of non empty, convex, closed

(non empty, convex and weakly compact respectively) subsets of X with

the Hausdorff distance.

(iii) Γ =
∑p

i=1 Ci1Ei is a simple multifunction with closed and convex values

with Ei ∩Ej = ∅ for i 6= j;

(iv) e ∈ L1
µ(X+) is such that λ(E) :=

∫
E
edµ is a convex finitely additive

measure;

(v) G = (Γ− e), F = G ∪ {0}.

We examine now the problem studied in [23] when the measure with re-

spect to which we integrate is only finitely additive. This case is not a mere

extension of the countably additive one. It has applications for instance in

finitely additive economies which were introduced first in [1] by Armstrong

and Richter: they explained why their model of a large economy is more re-

alistic than the countably additive one. The same model was also extensively

studied in [3], [4].

We begin with the bounded case, namely we assume that Ci ∈ cwk(X) for

every i = 1, . . . , p. Thanks to the Radström Embedding Theorem ([24]) and

to the Stone isomorphism we can consider the multifunctions Γ and G where

Γ =
p∑

i=1

Ci1h(Ei), (4)

G = Γ− e =
p∑

i=1

Ci1h(Ei) − e. (5)
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Thanks to (v) above, F certainly admits totally measurable selections and

so we can define the Aumann integral as usual, using the finitely additive

µ-integrability, [11, Chapter 3]: namely

- S1
F is the set of all µ-integrable selections of a multifunction F , that is

S1
F = {f ∈ L1

µ(X) : f(ω) ∈ F (ω) µ− almost everywhere};

- the Aumann integral of F is defined by

(A)−
∫

E
Fdµ =

{∫
E
fdµ, f ∈ S1

F

}
.

The finitely additive case here considered is quite different from the case con-

sidered, for instance, in [21] and [22], where the existence of suitable selections

depends upon the topological properties of the values of F .

Moreover, we shall denote by MΓ, MG the finitely additive multimeasures

defined as the indefinite Aumann integrals of Γ and G respectively.

By RX(M(·)) we shall denote the range of M(·) that is

RX(M(·)) =
⋃

E∈Σ

M(·)(E).

As Γ takes values in cwk(X), its Aumann integral is convex and weakly

compact: in fact, for every E ∈ Σ, we have that

p∑
i=1

Ciµ(E ∩ Ei) ⊆ (A)−
∫

E
Γdµ ⊆ (A)−

∫
h(E)

Γdµ = (6)

=
p∑

i=1

Ciµ(h(E ∩Ei)),

where the first inclusion and the last equality can be obtained by [9, Corollary

8] since in the proof of this corollary the countable additivity is not required,

while the middle inclusion can be obtained analogously to the proof of [21,

Theorem 5.1] (note that, since Γ is simple, we do not need the compactness

of the values of Γ).

Using these facts, statements analogous to those of [23, Propositions 3.1,

3.2 and 3.4], with the strong continuity of µ replacing the non atomicity, hold

for Γ also in the finitely additive case. Namely
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(a) MΓ(E) =
{∫

E
sdµ, s is a simple selection of Γ

}
;

(b) RX(MΓ) ∈ cwk(X);

(c) MG(E) = (A)−
∫

E
Γdµ−

∫
E
edµ ∈ cwk(X) for every E ∈ Σ.

In [23], Theorem 3.7 allowed us to obtain that RX(MG) ∈ cwk(X) when µ

is non atomic and countably additive. In the finitely additive case, Theorem

3.7 which is, in fact, a Lyapounov-type statement, does not hold in its com-

plete extension (a counterexample is easily derived from [8, Theorem 4.4]). Its

weakened finitely additive version, that is Theorem 1 below, will play a similar

role in achieving the convexity of RX(MG) in our case, although weak com-

pactness is not assured in general. These two results, despite their similarity,

do not compare: here we have only finite additivity but we have to assume

the equivalence between µ and m; the proof of Theorem 1 completely differs

from that of the quoted countably additive version, and is heavily based upon

the results of Section 3.

Theorem 1 Let X be a Banach lattice, Y a Banach space, µ a strongly

continuous finitely additive measure and e ∈ L1
µ(X+) be such that the finitely

additive measure λ =
∫

edµ is convex and admits µ as a control. If f is a Y -

valued simple function then setting m =
∫

fdµ, the range of the pair (m,λ)

is convex in Y ×X.

Proof: We know that if f =
∑p

i=1 ci1Ei for some finite decomposition of Ω,

{E1, . . . , Ep} then

(m, λ)(ΣE) = (m,λ)(ΣE∩E1) + . . . + (m,λ)(ΣE∩Ep).

So it is enough to note that, from Proposition 3, for each i = 1, . . . p,

(m,λ)(ΣE∩Ei) is convex and m is a multiple of µ on ΣE∩Ei . 2

As an immediate consequence we obtain that

Corollary 1 Let fj =
∑p

i=1 zi
j1Ei , j = 1, 2 be simple and measurable func-

tions with values in X and let λ as in Theorem 1. Then setting mj =
∫

fjdµ−λ

we have that m1, m2, (m1, m2) are convex finitely additive measures.
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Proof: Applying Theorem 1, one easily deduces that m1 and m2 are convex

finitely additive measures. We shall prove that the finitely additive measure

(m1, m2) is convex. It is enough to prove that from Proposition 3, for each

i = 1, . . . p, (m1,m2)(ΣE∩Ei) is convex for every E ∈ Σ.

By Proposition 3 the pair (λ, µ) is convex. So, for every D1, D2 ∈ ΣE∩Ei and

for every t ∈]0, 1[ there exists C ∈ ΣE∩Ei such that

µ(C) = tµ(D1) + (1− t)µ(D2)

λ(C) = tλ(D1) + (1− t)λ(D2).

Since on ΣE∩Ei mj = zi
jµ we have, for j = 1, 2,

mi
j(C) = zi

jµ(C)− λ(C) =

= tzi
jµ(D1) + (1− t)zi

jµ(D2)− tλ(D1)− (1− t)λ(D2) =

= tmj(D1) + (1− t)mj(D2);

thus

(m1,m2)(C) = t(m1,m2)(D1) + (1− t)(m1,m2)(D2). 2

Because of Theorem 1 the set RX(MG) is convex. In fact

Theorem 2 Under the previous assumptions RX(MG) is convex.

Proof: It is possible to prove it in an analogous way as in [16, Lemma 7].

We report the proof for completeness. We recall that G = Γ − e, with Γ =∑p
i=1 Ci1Ei and λ =

∫
edµ.

Let ϕ =
∑p

i=1 zi1Ei be a fixed simple selection of Γ. Consider the finitely

additive selection measure ν of MG, defined as

ν(·) =
∫
·
ϕdµ− λ.

Fix x1, x2 in RX(MG) and t ∈]0, 1[. Then there exist two sets A1, A2 ∈ Σ and

two simple selections of Γ, f1 and f2 (fj =
∑p

i=1 zi
j1Ei , j = 1, 2), such that

xj =
∫

Aj

fjdµ− λ(Aj), j = 1, 2.
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We put mj =
∫

fjdµ − λ, for j = 1, 2. By Corollary 1 m1, m2, (m1, m2) are

convex. Then there exist B1, B2, B3 such that B1 ⊂ A1 \ A2, B2 ⊂ A2 \ A1

and B3 ⊂ A1 ∩A2 and

m1(B1) = tm1(A1 \A2); m2(B2) = (1− t)m2(A2 \A1);

(m1, m2)(B3) = t(m1, m2)(A1 ∩A2).

Set B4 = (A1 ∩ A2) \ B3 and B = ∪4
i=1Bi. We will show that for a suitable

selection ν∗ of MG, ν∗(B) = tx1 + (1− t)x2.

Indeed, for every E ∈ Σ, define

ν∗(E) = ν(E \B) + m1(E ∩ (B1 ∪B3)) + m2(E ∩ (B2 ∪B4)) =

=
∫

E\B
ϕdµ− λ(E \B) +

∫
E∩(B1∪B3)

f1dµ +

+
∫

E∩(B2∪B4)
f2dµ− λ(E ∩B) =

=
∫

E

(
ϕ · 1E\B + f1 · 1E∩(B1∪B3) + f2 · 1E∩(B2∪B4)

)
dµ− λ(E).

Then the finitely additive measure ν∗ is a selection of MG and if we evaluate

ν∗ on the set B we obtain

ν∗(B) = m1(B1 ∪B3) + m2(B2 ∪B4) = tm1(A1 \A2) + tm1(A1 ∩A2) +

+ (1− t)m2(A2 \A1) + m2(A1 ∩A2 \B3) =

= tx1 + (1− t)x2. 2

Moreover we have that

Theorem 3 If G is a multifunction as before then cl{RX(MG)} =

RX(MG).

Proof: From (c), (5), (6) above and [22, Theorem 5.1], (which holds in our case

without compactness of values of G), for every E ∈ Σ, MG(E) ⊂ MG(τ(E)).

For the converse inclusion, if x ∈ RX(MG) then there exists a set H ∈ Gσ

such that

x ∈ MG(H) = (A)−
∫

H
Γdµ− λ (H)
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and then x =
p∑

i=1

xiµ(H ∩ τ(Ei))− λ (H) for some xi ∈ Ci, i = 1, . . . , p.

Since G is Fréchet-Nikodym dense in Gσ , for every ε > 0 there exists a G -

measurable set B such that

µ(H∆B) ≤ ε

2kp
,

for some k > max{‖e‖1, h(C1, {0}), . . . , h(Cp, {0})}. Then

‖x−
p∑

i=1

xiµ(B ∩ τ(Ei))− λ (B)‖ ≤
p∑

i=1

‖xi‖µ(H∆B) + |λ |(H∆B) ≤ ε.

Since B is a G -measurable set, there exists E ∈ Σ such that τ(E) = B; let us

put

xε :=
p∑

i=1

xiµ(B ∩ τ(Ei))− λ (B) =
p∑

i=1

xiµ(E ∩ Ei)− λ(E).

We have that xε ∈ RX(MG) and ‖x− xε‖ ≤ ε.

Hence RX(MG) ⊂ cl{RX(MG)} and again applying (c), the equality follows. 2

Now, as in [23, Theorem 3.15], one can show that, if 0 6∈ G(ω) for all

ω ∈ Ω, then, for every E ∈ Σ,

(A)−
∫

E
Fdµ = RX(MG|Σ∩E) (7)

and therefore it is convex.

Let us now consider the unbounded case, namely assume that Ci ∈ cf(X), i =

1, . . . p. For each integer n, consider

Γn(ω) = Γ(ω) ∩ nX1, Fn(ω) = (Γn(ω)− e(ω)) ∪ {0}.

As in [23, Proposition 3.16] one shows that, for every E ∈ Σ

(A)−
∫

E
Fdµ =

⋃
n

(A)−
∫

E
Fndµ. (8)

The sequence on the right hand side of (8) is increasing. Hence, if 0 6∈ G,

(A)−
∫

E
Fdµ is the union of an increasing sequence of convex sets, and therefore

is convex.
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For the general case, that is when some values of G contain 0, similarly to

[23, Theorem 3.18] denote by Ω0 the set {ω : 0 ∈ G(ω)}; the Aumann integral

splits into two parts:

(A)−
∫

E
Fdµ = (A)−

∫
E∩Ω0

Fdµ + (A)−
∫

E\Ω0

Fdµ

It only remains to derive the convexity of the first summand by noting that

F has convex values in Ω0.

In conclusion we have obtained the following:

Theorem 4 Let (Ω, Σ, µ) be a non negative finitely additive measure space

with µ strongly continuous, X a Banach lattice, Γ : Ω → cf(X) a simple

multifunction and e ∈ L1
µ(X+) generate a semiconvex finitely additive measure

which admits µ as a control. Consider F = (Γ − e) ∪ {0}. Then, for every

E ∈ Σ, (A)−
∫

E
Fdµ is convex.

We shall now derive a result similar to [23, Theorem 3.18]. Indeed, by

means of Theorem 3, and the results in the countably additive case, [23, The-

orem 3.18], we obtain the following

Theorem 5 Let (Ω, Σ, µ) be a non negative finitely additive measure space

with µ strongly continuous, X a Banach lattice, Γ : Ω → cf(X) a simple

multifunction and let e ∈ L1
µ(X+) generate a Liapounov indefinite integral

which admits µ as a control. Consider F = (Γ − e) ∪ {0}. Then, for every

E ∈ Σ, (A) −
∫

E
Fdµ is a convex set which is the union of an increasing

sequence of convex and relatively weakly compact sets.

Proof: The line of the proof is somewhat analogous to that of [23, Theorem

3.18]. As before consider

Γn(ω) = Γ(ω) ∩ nX1, Gn(ω) = Γn(ω)− e(ω), Fn = Gn(ω) ∪ {0}.

and the Stone transforms of Γn, Gn, denoted by Γn and Gn respectively. From

[23, Theorem 3.14] RX(MGn
) is weakly compact and, since from (7),

(A)−
∫

E
Fndµ = RX(MGn|E∩Σ

)
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by Theorem 3 above, we have that cl

{∫
E
Fndµ

}
is convex and weakly compact

for each n. Hence the already proved equality

(A)−
∫

E
Fdµ =

⋃
n

(A)−
∫

E
Fndµ

shows the assertion. 2

Remark 3 Note that Theorem 5 above is the only result that can be par-

tially derived from the countably additive case [23] by means of the Stone

extension. The other results in this section, despite the similarity of the state-

ments, cannot be obtained in this way since the assumptions here and in [23]

do not compare. For example if we take µ the Lebesgue measure on [0, 1], a

non negative integrable function e such that µ(supp e) ∈]0, 1[ then λ =
∫

edµ

is automatically Liapounov but µ 6� λ. Viceversa the example which can be

derived from [8] verifies the hypothesis on µ and λ given here but λ is not

Liapounov.
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