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1. Introduction

One the most recent development in vector integration is directed to-
ward defining the integral in a locally convex space. This generalization
is not artificial, but follows the current investigation concerning, for
example, Stochastic Processes. The existence of a density is indeed a
fundamental tool for the decomposition theorems that allow to single

out the ”good” integrators in the theory of Stochastic Integration. The
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setting of locally convex spaces thus makes it possible to develop a
theory of Stochastic integration e.g. in nuclear spaces as the space of
distributions ([2]).

The integral of a scalar function with respect to a vector finitely ad-
ditive measure p can be defined in several different ways (see [7]).
In particular, one can consider the Bartle-Dunford-Schwartz integral
defined in the following way: let X be a locally convex topological
vector space, (£2,X) a measurable space, 1 : ¥ — X a finitely additive
measure, f a scalar valued function such that for every a* € X*, f €
LY(x*p); then fis integrable in the Bartle-Dunford—Schwartz sense if

for every E € ¥ there exists g € X such that

rtos) = [, pi

for every z* € X*. For this integral Musial[10] has given a Radon-
Nikodym Theorem when p is countably additive: he obtains the equiv-
alence of the existence of a density with three equivalent conditions

expressing the suitable absolute continuity.

The aim of this paper is to extend the Radon-Nikodym Theorem of
[10] to the case of finitely additive measure’s.
The Radon-Nikodym Theorem here proven makes use of the Moedomo-
Uhl kind of assumption [9].
The first complication arises from the fact that the finite additivity,
due to the lack of the Radon-Nikodym Theorem even in the scalar

setting, does not guarantee under the simple assumption of the absolute

T*v

continuity the existence of the scalar density .
dx* i
Hence one has to assume such existence or some conditions ensuring
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it, like those in [4]. Moreover, since the proof in the countably additive
case is based upon the existence of a lifting, it cannot be mimicked
in the present setting; its role in the proof is somehow replaced by
assuming that p admits a Rybakov control. This condition, which is
not necessarily satisfied when X is a locally convex topological vector
space even for s-bounded p (as it is when X is a Banach space), is

shortly discussed at the end of the paper.

2. Preliminaries

Troughout the sequel X will be a sequentially complete locally convex

topological vector space. Let (€2, %) be a measurable space.

(C1) Let v, : ¥ — X be two finitely additive measures (f.a.m.’s) such
that for every x* € X* the f.a.m.’s z*u and z*v are b.v. Assume

also that p admits a Rybakov control A = |x{u|.
We begin with some definitions.

DEFINITION 1. We shall say that v is scalarly uniformly absolutely
continuous with respect to u, and write v < p if for every € > 0 there
exists § > 0 such that for every z* € X* and F € ¥ |z*u|(E) < 0 yields

|z*V|(F) < €

DEFINITION 2. We shall say that v is scalarly dominated by p if
there exists M > 0 such that |z*v|(E) < M|x*p|(E) for every E € X2

and z* € X*.
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DEFINITION 3. We shall say that v is subordinated to p if there exists
N > 0 such that for every E € X v(FE) € aco{u(F),F € ENX} where

aco(A) = {Z oz, x; € A Z || = 1}.

Let P be the family of seminorms generating the topology of X.
We shall say that the range of p R(u) is bounded if for every p € P
there exists A\, > 0 such that R(u) C \p{z € X : p(x) < 1}.

If R(p) is bounded, we shall set

Pu = {j';,p e P}

and
={z" e X" 2" <p}.
Let

Giu={f: Q= R:felL'(z*u)va* e |J A3,
peP,,

DEFINITION 4. Let f € G1,; we shall say that f is p-integrable
provided for every A € ¥ there exists v(A) € X such that

= /A fd(z™p)

for every z* € X*. Then we shall set [, fdu = v(A).

We shall need in the sequel the following finitely additive extension of

a classical theorem

THEOREM 1. (Image Law) Let m,s: ¥ — IR be two f.a.m.’s with
bounded variation. If s = [ fdm and h : Q — IR is a X-measurable bounded
function, then fh € L'(|m|) and

/hds _ /hfdm (1)
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Proof. As h is bounded, there exists M > 0 such that |h(w)| < M for
every w € Q and thus |hf| < M|f| € L*(Jm|): hence the m-integrability
of hf is straightforward. It remains to prove the equality in (1).

Let h be simple: then (1) is obvious. Assume now that A > 0; then the
Lebesgue ladder trick gives a sequence (hy,), of simple functions such

that
hp < hpt1 < h for every n € IV;
hy converges uniformly to h.

By the m-integrability of f there exists a defining sequence of simple
functions (f, ), such that f,, — fin L(|m|) ([7]). Let s,,(:) = Joy fndm;

then for every € > 0 there exists @ € IN such that for all n > 7

3n = sI(B) = [ 1fu = Slaim] < [ |0 = fldim] < e

for every E € ¥, namely [s,, — s|(+) converges to 0 uniformly in 3.

Let E € X be fixed and let us put a;,(F) = [ hnds;; then, since h,,
and f; are simple, a;,(E) = [g hy fidm. We shall show that for every
i € IN there exists lim a;p, (E) and that zliglo a;n(E) exists uniformly
in n € IN. Then it will follow that

lim lim a;,(F) = lim lim a;,(E) = lim a;,(E).

i—00 N—00 n—00 j—00 i,n—00
Let ¢ € IN be fixed; from the uniform convergence of h,, to h we have
that h, s;-converges to h and [ hnds; — [ hds; that is nlLrgoai7n(E)
exists.

Moreover, if n is fixed, as h,, is simple, it is easy to check that

|ai,n(E)—/ hds| = y/ hndsi—/ hds| < M|si — |(E)
E E E
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and since, as observed, |s; — s[(2) — 0it follows that lim a; ,(E) = [ hnpds
1—00 E

uniformly with respect to n.

Then
/ hfdm = lim / hnfidm:/ hds.
E ,Nn—0o0 J | E

For general bounded h it is enough to decompose h = h™ — h™.

DEFINITION 5. We shall say that a measurable function f: Q — IR
is A-null if for every € > 0 it is A({|f| > }) = 0.

Observe that if f =0 A-a.e. then f is A-null, while the converse is true
if \ is o-additive, or at least A fulfills the condition

(o) the ideal of \-null sets is closed under countable unions.

We list two straightforward properties of A-null functions that we will

need in the sequel:

(p-1) fis Anulliff [ |f|d\ =0 for every E € ;

(p.2) if f is A-null and g is bounded then fg is A-null.

3. Radon-Nikodym Theorem

We shall now prove the main theorem.

THEOREM 2. (Radon-Nikodym) Let (2, 3) be a measurable space,
and v, X — X be two f.a.m.’s satisfying (C1) .
Assume that for every x € X* there exists a M-exhaustion (QF), such

n

that for every n € IN the set

z*p(A)
A(4)

*

s =

n

LAE QT NX NA) >0}
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is bounded for every x* € X*, and for everyn € IN the ranges R(p|qs+ )
and R(v|ge+ny) are closed.

Then the following are equivalent:
i) v <<y
i) v is scalarly dominated by i;
iii) there exists ¥ : Q — IR bounded and such that
z'v(E) = / ddz* p
E
for every E € % and for every z* € X*;
iv) v is subordinated to p.

Proof. The proofs of the implications i) <=ii) and iv) = ii) are
essentially the same as in [6]; also the implication iii) = iv) can be
proven in the same fashion as in the same paper, by making use of
the results in [7] that are the extensions in the finitely additive setting
of those of Lewis [6]. Hence it only remains to prove the implication

i) = iii) .

dx*uy, dx*uvy
d\x 7 d\

Claim 1 - For every z* € X* there exist , where

fin = pilgzens and vy = v]gpeax-

Proof. We shall show the assertion for (z*u, \) since the proof for
(z*v, \) is analogous.
Let x* € X* be fixed and let n € IN. For every a,b € IR let y* = ax™ + bx{:
since our assumptions ensure that R(y*u, ) is closed, the signed measure

y*pun, admits a Hahn dcomposition. Then from [3] Lemma 4.3 there
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. " iy, dx* i
t =
€eX1Sts d|aj‘8/_,6| d)\
We shall denote fin) = d;fT% and ggl’) = d:il)'\u =

Observe also that, without loss of generality, one can choose a repre-

sentative of g(? such that the set {g(z) = 0} is empty, and | ggi) | = 1.
0

x Z’o

(7:)

.+ 15 essentially bounded on ) for every n € IN.

Claim 2 - g

This follows immediately from the boundedness of S .
Then define Lg’i) = supess\ggm and let Q(()T’Lx)* C Q2" be such that )\(Qgg*
and
9 ()| < LY

for every w ¢ Qé o

n)
’ z*

. Since (2%7),, is a A-exhaustion, (U, ng) ) =0.
Define @/, = Q" — Qé”; then AUy, 2, ) = A(©) and (¥, .)a is
a A-exhaustion of . Since the Q’s are pairwise disjoint, also the

o0

;o NS _ (n)

Qn -+ S are pairwise disjoint, so we can define g, = E 9 1oy - and
7 n=1 ™

Jor = Zfa(;?)lﬂ’ o
n=1 i
Let ¥ € X" be fixed and define H,x = {g,« # 0}.

fary
*

*
xr gﬂjo

Claim 3 - The function fa* is X-null in H . N Q;L o

Proof. From the linearity of the maps z* — f,.« and * — g,~, and

from assumption ii) for every E € ¥ and for every 51,32 € IR

/ 1B far + B2fuzld\ < M/ |19+ + B2gaz |dA (2)
E E

Let n be fixed and let Q@+ =€ , N H_«. Then g..+ is bounded in
n, n,ZL‘ x T

X

me* and therefore there exists a sequence of simple functions (fyg(cf)k) k
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(n)

that converges uniformly to g,»” in me*; also, since in Qn 2% 9 70

for k large enough fyg(;f)k #0in an*

(n) :

Since y < k> Yay are simple functions, it is possible to decompose 2,

T

into finitely many subsets where both these functions are constant.
(z*,k) 1

Let (E,(L] ))Ll be such a decomposition. Taking 3y = ——— and

J (n) E(])

PY];*J@‘( n )
1
B2 = " in (2) we then find
9:1:6 (En )
/ o T — A S M = 1A
EnEy ’}/x*’k g;p*o ENE} Var k

)

for every j and since the ET(Lj Vs are finitely many, for every F C S~2n *

xr
E P)/g;*J{; gl'*o E Vz*,k

By taking the limit for £k — oo in (3) we then obtain

* f *
|fi — @\d)\ -0
E g$* gﬂj*o

~1]dx (3)

for every E C ﬁn +. Then (p1) implies Claim 3.

T

o ~
Let ¥ = ~£2 From (p. 2) the function [ —Ugpx is Anullin Q o«
gm*o ’

Claim 4 - For every e > 0 |fy<| < (M + €)|ger| A-a.e. in QX" , where

M is that of the scalar domination.

Proof. Indeed from the assumption ii) for every E € Q¥ N'Y

/|fx*|d)\§M/ |G~ [dA.
E E

Hence one can easily prove that for every € > 0

[far| < (M + €)[ga-]
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A-a.e. in QF,

From Claim 4 it follows that if w € @ . — H,«, namely if g+ (w) =0
then A\-a.s. f«(w) = 0; therefore f, .« =0 A-a.e. in Q/nx* — H,+ and

then f .« —Jg,+ =0 A-a.e. in Q:wv* — H.x.

We can therefore conclude that f,.« —9Jg,.+ is A-null in Q;L 2
Claim 5 - For every z* € X*, 2*v(E) = [ ddz*pu.

Proof. From (p.1) we find

|/Efx*d)\—/E19gw*d)\| g/E|fx*—q99x*|dA:0

for every E C Q;x* and thus for every E C Q:L:c*

*d)\:/bq xd.
/Efx PR

Observe also that, since [, | =1 from Claim 4 |f + | <M +¢ l-a.e.
in each Q; o whence ¥ is A -a.e. bounded. From Theorem 1, for every

F €Y and for z* € X* fixed

T V(ENQY) = / fuord)\ = Vg d\ = Idz* .
EnQe* EnQ* EnQe*
Since (Q%"),, is a A-exhaustion of Q, for every E € ¥

n

k 00
*v(E) = Zx*u(E NOY) +2*v[EN( U Q) =
i=1 i=k+1

k 0
Z/ Ozt p+ ' v[En( Q).
=1 BN i=k+1

while

ddx* :/ ddx*p + ddz*
/E a En(UJr, ) H En(U®, ., 2 H

1 i=k+1""1
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whence

|z v(E /ﬁd:ﬁu!<\/ ﬁdmu!—l—]waﬂ UQI
Eﬁ Q" i=k+1

Since lim AN ( U Q)] =0 and |z*v| < X and |z*p| < A, it fol-

i=k+1
lows that

= / ddx™
E

for every E C Q.
REMARK 1.

1. In [5] Drewnovski studied the existence of a Rybakov control for an
X-valued countably additive measure. He showed that in general a
Rybakov control does not exist in 1.c.t.v.spaces unless some further
conditions are satisfied. He also gave a quite strong condition for

a f.a.m. to admit a Rybakov control.

2. It is easy to mimick the previous proof provided p admits a control A
dx*p
dA
be of interest to investigate whether a f.a.m. p admitting a control

such that for some z* € A" A\({ =0} = 0. It could therefore

A always fulfills this condition.
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