Atti Sem. Mat. Fis. Univ. Modena, XLII 343-356 (1994)

A Radon-Nikodym theorem for the Bartle-Dunford-Schwartz integral with respect to finitely additive measures *

Anna Martellotti (amart@dipmat.unipg.it) Department of Mathematics, University of Perugia, Via Vanvitelli 1, Perugia 06123, Italy

Kazimier Musial (musial@math.uni.wroc.pl) Department of Mathematics, University of Wroclaw, Poland

Anna Rita Sambucini (matears1@unipg.it) Department of Mathematics, University of Perugia, Via Vanvitelli 1, Perugia 06123, Italy

AMS subject classification: 28B25

1. Introduction

One the most recent development in vector integration is directed toward defining the integral in a locally convex space. This generalization is not artificial, but follows the current investigation concerning, for example, Stochastic Processes. The existence of a density is indeed a fundamental tool for the decomposition theorems that allow to single out the "good" integrators in the theory of Stochastic Integration. The * Nota giunta in Redazione il 25/2/1992.

This paper has been partially supported by G.N.A.F.A. of the C.N.R.

setting of locally convex spaces thus makes it possible to develop a theory of Stochastic integration e.g. in nuclear spaces as the space of distributions ([2]).

The integral of a scalar function with respect to a vector finitely additive measure μ can be defined in several different ways (see [7]). In particular, one can consider the Bartle–Dunford–Schwartz integral defined in the following way: let X be a locally convex topological vector space, (Ω, Σ) a measurable space, $\mu : \Sigma \to X$ a finitely additive measure, f a scalar valued function such that for every $x^* \in X^*, f \in$ $L^1(x^*\mu)$; then f is integrable in the Bartle–Dunford–Schwartz sense if for every $E \in \Sigma$ there exists $x_E \in X$ such that

$$x^*(x_E) = \int_E f dx^* \mu$$

for every $x^* \in X^*$. For this integral Musial[10] has given a Radon-Nikodym Theorem when μ is countably additive: he obtains the equivalence of the existence of a density with three equivalent conditions expressing the suitable *absolute continuity*.

The aim of this paper is to extend the Radon-Nikodym Theorem of [10] to the case of finitely additive measure's.

The Radon-Nikodym Theorem here proven makes use of the Moedomo-Uhl kind of assumption [9].

The first complication arises from the fact that the finite additivity, due to the lack of the Radon-Nikodym Theorem even in the scalar setting, does not guarantee under the simple assumption of the absolute continuity the existence of the scalar density $\frac{dx^*\nu}{dx^*\mu}$.

Hence one has to assume such existence or some conditions ensuring

3

it, like those in [4]. Moreover, since the proof in the countably additive case is based upon the existence of a lifting, it cannot be mimicked in the present setting; its role in the proof is somehow replaced by assuming that μ admits a Rybakov control. This condition, which is not necessarily satisfied when X is a locally convex topological vector space even for s-bounded μ (as it is when X is a Banach space), is shortly discussed at the end of the paper.

2. Preliminaries

Troughout the sequel \mathcal{X} will be a sequentially complete locally convex topological vector space. Let (Ω, Σ) be a measurable space.

(C1) Let $\nu, \mu : \Sigma \to \mathcal{X}$ be two finitely additive measures (f.a.m.'s) such that for every $x^* \in \mathcal{X}^*$ the f.a.m.'s $x^*\mu$ and $x^*\nu$ are b.v. Assume also that μ admits a Rybakov control $\lambda = |x_0^*\mu|$.

We begin with some definitions.

DEFINITION 1. We shall say that ν is scalarly uniformly absolutely continuous with respect to μ , and write $\nu \ll \mu$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for every $x^* \in \mathcal{X}^*$ and $E \in \Sigma |x^*\mu|(E) < \delta$ yields $|x^*\nu|(E) < \varepsilon$

DEFINITION 2. We shall say that ν is scalarly dominated by μ if there exists M > 0 such that $|x^*\nu|(E) \le M|x^*\mu|(E)$ for every $E \in \Sigma$ and $x^* \in \mathcal{X}^*$. DEFINITION 3. We shall say that ν is *subordinated* to μ if there exists N > 0 such that for every $E \in \Sigma \ \nu(E) \in \overline{aco}\{\mu(F), F \in E \cap \Sigma\}$ where $aco(A) = \{\sum_{i=1}^{n} \alpha_i x_i, x_i \in A, \sum_{i=1}^{n} |\alpha_i| = 1\}.$

Let \mathcal{P} be the family of seminorms generating the topology of \mathcal{X} . We shall say that the range of μ $R(\mu)$ is *bounded* if for every $p \in \mathcal{P}$ there exists $\lambda_p > 0$ such that $R(\mu) \subset \lambda_p \{x \in \mathcal{X} : p(x) \leq 1\}$.

If $R(\mu)$ is bounded, we shall set

$$\mathcal{P}_{\mu} = \{\frac{p}{\lambda_p}, p \in \mathcal{P}\}$$

and

$$\mathcal{X}^*_{\mu,p} = \{ x^* \in \mathcal{X}^* : x^* \le p \}.$$

Let

$$G_{1,\mu} = \{ f : \Omega \to \mathbb{R} : f \in L^1(|x^*\mu|) \forall x^* \in \bigcup_{p \in \mathcal{P}_\mu} \mathcal{X}_{\mu,p}^* \}.$$

DEFINITION 4. Let $f \in G_{1,\mu}$; we shall say that f is μ -integrable provided for every $A \in \Sigma$ there exists $v(A) \in \mathcal{X}$ such that

$$x^*v(A) = \int_A f d(x^*\mu)$$

for every $x^* \in \mathcal{X}^*$. Then we shall set $\int_A f d\mu = v(A)$.

We shall need in the sequel the following finitely additive extension of a classical theorem

THEOREM 1. (Image Law) Let $m, s : \Sigma \to \mathbb{R}$ be two f.a.m.'s with bounded variation. If $s = \int f dm$ and $h : \Omega \to \mathbb{R}$ is a Σ -measurable bounded function, then $fh \in L^1(|m|)$ and

$$\int h ds = \int h f dm \tag{1}$$

Proof. As h is bounded, there exists M > 0 such that $|h(\omega)| \leq M$ for every $\omega \in \Omega$ and thus $|hf| \leq M|f| \in L^1(|m|)$: hence the *m*-integrability of hf is straightforward. It remains to prove the equality in (1). Let h be simple: then (1) is obvious. Assume now that $h \geq 0$; then the

Lebesgue ladder trick gives a sequence $(h_n)_n$ of simple functions such that

 $h_n \leq h_{n+1} \leq h$ for every $n \in \mathbb{N}$;

 h_n converges uniformly to h.

By the *m*-integrability of f there exists a defining sequence of simple functions $(f_n)_n$ such that $f_n \to f$ in $L^1(|m|)$ ([7]). Let $s_n(\cdot) = \int_{(\cdot)} f_n dm$; then for every $\varepsilon > 0$ there exists $\overline{n} \in \mathbb{N}$ such that for all $n > \overline{n}$

$$|s_n - s|(E) = \int_E |f_n - f|d|m| \le \int_\Omega |f_n - f|d|m| < \varepsilon$$

for every $E \in \Sigma$, namely $|s_n - s|(\cdot)$ converges to 0 uniformly in Σ . Let $E \in \Sigma$ be fixed and let us put $a_{i,n}(E) = \int_E h_n ds_i$; then, since h_n and f_i are simple, $a_{i,n}(E) = \int_E h_n f_i dm$. We shall show that for every $i \in \mathbb{N}$ there exists $\lim_{n \to \infty} a_{i,n}(E)$ and that $\lim_{i \to \infty} a_{i,n}(E)$ exists uniformly in $n \in \mathbb{N}$. Then it will follow that

$$\lim_{i \to \infty} \lim_{n \to \infty} a_{i,n}(E) = \lim_{n \to \infty} \lim_{i \to \infty} a_{i,n}(E) = \lim_{i,n \to \infty} a_{i,n}(E).$$

Let $i \in \mathbb{N}$ be fixed; from the uniform convergence of h_n to h we have that $h_n s_i$ -converges to h and $\int_E h_n ds_i \to \int_E h ds_i$ that is $\lim_{n \to \infty} a_{i,n}(E)$ exists.

Moreover, if n is fixed, as h_n is simple, it is easy to check that

$$|a_{i,n}(E) - \int_{E} h_{n} ds| = |\int_{E} h_{n} ds_{i} - \int_{E} h_{n} ds| \le M |s_{i} - s|(E)$$

and since, as observed, $|s_i - s|(\Omega) \to 0$ it follows that $\lim_{i \to \infty} a_{i,n}(E) = \int_E h_n ds$ uniformly with respect to n.

Then

$$\int_E hfdm = \lim_{i,n\to\infty} \int_E h_n f_i dm = \int_E hds.$$

For general bounded h it is enough to decompose $h = h^+ - h^-$.

DEFINITION 5. We shall say that a measurable function $f : \Omega \to \mathbb{R}$ is λ -null if for every $\varepsilon > 0$ it is $\lambda(\{|f| > \varepsilon\}) = 0$.

Observe that if f = 0 λ -a.e. then f is λ -null, while the converse is true if λ is σ -additive, or at least λ fulfills the condition

(σ) the ideal of λ -null sets is closed under countable unions.

We list two straightforward properties of λ -null functions that we will need in the sequel:

(**p.1**) f is λ -null iff $\int_E |f| d\lambda = 0$ for every $E \in \Sigma$;

(**p.2**) if f is λ -null and g is bounded then fg is λ -null.

3. Radon-Nikodym Theorem

We shall now prove the main theorem.

THEOREM 2. (Radon-Nikodym) Let (Ω, Σ) be a measurable space, and $\nu, \mu : \Sigma \to \mathcal{X}$ be two f.a.m.'s satisfying (C1). Assume that for every $* \in X^*$ there exists a λ -exhaustion $(\Omega_n^{x^*})_n$ such that for every $n \in \mathbb{N}$ the set

$$S_n^{x^*} = \{\frac{x^*\mu(A)}{\lambda(A)}, A \in \Omega_n^{x^*} \cap \Sigma, \lambda(A) > 0\}$$

is bounded for every $x^* \in \mathcal{X}^*$, and for every $n \in \mathbb{N}$ the ranges $R(\mu|_{\Omega_n^{x^*} \cap \Sigma})$ and $R(\nu|_{\Omega_n^{x^*} \cap \Sigma})$ are closed.

Then the following are equivalent:

i) $\nu \ll \mu$;

- ii) ν is scalarly dominated by μ ;
- iii) there exists $\vartheta: \Omega \to I\!\!R$ bounded and such that

$$x^*\nu(E) = \int_E \vartheta dx^*\mu$$

for every $E \in \Sigma$ and for every $x^* \in \mathcal{X}^*$;

iv) ν is subordinated to μ .

Proof. The proofs of the implications i) \iff ii) and iv) \implies ii) are essentially the same as in [6]; also the implication iii) \implies iv) can be proven in the same fashion as in the same paper, by making use of the results in [7] that are the extensions in the finitely additive setting of those of Lewis [6]. Hence it only remains to prove the implication ii) \implies iii).

Claim 1 - For every $x^* \in \mathcal{X}^*$ there exist $\frac{dx^*\mu_n}{d\lambda}$, $\frac{dx^*\nu_n}{d\lambda}$, where $\mu_n = \mu|_{\Omega_n^{x^*} \cap \Sigma}$ and $\nu_n = \nu|_{\Omega_n^{x^*} \cap \Sigma}$.

Proof. We shall show the assertion for $(x^*\mu, \lambda)$ since the proof for $(x^*\nu, \lambda)$ is analogous.

Let $x^* \in \mathcal{X}^*$ be fixed and let $n \in \mathbb{N}$. For every $a, b \in \mathbb{R}$ let $y^* = ax^* + bx_0^*$: since our assumptions ensure that $R(y^*\mu_n)$ is closed, the signed measure $y^*\mu_n$ admits a Hahn dcomposition. Then from [3] Lemma 4.3 there exists $\frac{dx^*\mu_n}{d|x_0^*\mu|} = \frac{dx^*\mu_n}{d\lambda}$. We shall denote $f_{x^*}^{(n)} = \frac{dx^*\nu_n}{d\lambda}$ and $g_{x^*}^{(n)} = \frac{dx^*\mu_n}{d\lambda}$. Observe also that, without loss of generality, one can choose a representative of $g_{x_0^*}^{(n)}$ such that the set $\{g_{x_0^*}^{(n)} = 0\}$ is empty, and $|g_{x^*_0}^{(n)}| = 1$.

Claim 2 - $g_{x^*}^{(n)}$ is essentially bounded on $\Omega_n^{x^*}$ for every $n \in \mathbb{N}$.

This follows immediately from the boundedness of $S_n^{x^*}$. Then define $L_{x^*}^{(n)} = supess|g_{x^*}^{(n)}|$ and let $\Omega_{0,x^*}^{(n)} \subset \Omega_n^{x^*}$ be such that $\lambda(\Omega_{0,x^*}^{(n)}) = 0$ and

$$|g_{x^*}^{(n)}(\omega)| \le L_{x^*}^{(n)}$$

for every $\omega \notin \Omega_{0,x^*}^{(n)}$. Since $(\Omega_n^{x^*})_n$ is a λ -exhaustion, $\lambda(\bigcup_n \Omega_{0,x^*}^{(n)}) = 0$. Define $\Omega'_{n,x^*} = \Omega_n^{x^*} - \Omega_{0,x^*}^{(n)}$; then $\lambda(\bigcup_n \Omega'_{n,x^*}) = \lambda(\Omega)$ and $(\Omega'_{n,x^*})_n$ is a λ -exhaustion of Ω . Since the $\Omega_n^{x^*}$'s are pairwise disjoint, also the Ω'_{n,x^*} 's are pairwise disjoint, so we can define $g_{x^*} = \sum_{n=1}^{\infty} g_{x^*}^{(n)} 1_{\Omega'_{n,x^*}}$ and $f_{x^*} = \sum_{n=1}^{\infty} f_{x^*}^{(n)} 1_{\Omega'_{n,x^*}}$. Let $x^* \in \mathcal{X}^*$ be fixed and define $H_{x^*} = \{g_{x^*} \neq 0\}$.

Claim 3 - The function
$$\frac{f_{x^*}}{g_{x^*}} - \frac{f_{x^*_0}}{g_{x^*_0}}$$
 is λ -null in $H_{x^*} \cap \Omega'_{n,x^*}$.

Proof. From the linearity of the maps $x^* \to f_{x^*}$ and $x^* \to g_{x^*}$, and from assumption **ii**) for every $E \in \Sigma$ and for every $\beta_1, \beta_2 \in \mathbb{R}$

$$\int_{E} |\beta_1 f_{x^*} + \beta_2 f_{x_0^*}| d\lambda \le M \int_{E} |\beta_1 g_{x^*} + \beta_2 g_{x_0^*}| d\lambda \tag{2}$$

Let n be fixed and let $\widetilde{\Omega}_{n,x^*} = \Omega'_{n,x^*} \cap H_{x^*}$. Then g_{x^*} is bounded in $\widetilde{\Omega}_{n,x^*}$ and therefore there exists a sequence of simple functions $(\gamma_{x^*,k}^{(n)})_k$

8

that converges uniformly to $g_{x^*}^{(n)}$ in $\widetilde{\Omega}_{n,x^*}$; also, since in $\widetilde{\Omega}_{n,x^*}$ $g_{x^*} \neq 0$ for k large enough $\gamma_{x^*,k}^{(n)} \neq 0$ in $\widetilde{\Omega}_{n,x^*}$.

Since $\gamma_{x^*,k}^{(n)}, g_{x_0^*}$ are simple functions, it is possible to decompose $\widetilde{\Omega}_{n,x^*}$ into finitely many subsets where both these functions are constant. Let $(E_n^{(j)})_{j=1}^{r(x^*,k)}$ be such a decomposition. Taking $\beta_1 = \frac{1}{\gamma_{x^*,k}^{(n)}(E_n^{(j)})}$ and

 $\beta_2 = -\frac{1}{g_{x_0^*}(E_n^{(j)})} \text{ in } (2) \text{ we then find}$

$$\int_{E \cap E_n^{(j)}} |\frac{f_{x^*}}{\gamma_{x^*,k}^{(n)}} - \frac{f_{x^*_0}}{g_{x^*_0}}| d\lambda \le M \int_{E \cap E_n^{(j)}} |\frac{g_{x^*}}{\gamma_{x^*,k}^{(n)}} - 1| d\lambda$$

for every j and since the $E_n^{(j)}$'s are finitely many, for every $E \subset \widetilde{\Omega}_{n,x^*}$

$$\int_{E} \left| \frac{f_{x^*}}{\gamma_{x^*,k}^{(n)}} - \frac{f_{x^*_0}}{g_{x^*_0}} \right| d\lambda \le M \int_{E} \left| \frac{g_{x^*}}{\gamma_{x^*,k}^{(n)}} - 1 \right| d\lambda \tag{3}$$

By taking the limit for $k \to \infty$ in (3) we then obtain

$$\int_{E} \left| \frac{f_{x^*}}{g_{x^*}} - \frac{f_{x^*_0}}{g_{x^*_0}} \right| d\lambda = 0$$

for every $E \subset \widetilde{\Omega}_{n,x^*}$. Then **(p1)** implies **Claim 3.** Let $\vartheta = \frac{f_{x^*_0}}{g_{x^*_0}}$. From **(p. 2)** the function $f_{x^*} - \vartheta g_{x^*}$ is λ -null in $\widetilde{\Omega}_{n,x^*}$.

Claim 4 - For every $\varepsilon > 0$ $|f_{x^*}| \le (M + \varepsilon)|g_{x^*}|$ λ -a.e. in $\Omega_n^{x^*}$, where M is that of the scalar domination.

Proof. Indeed from the assumption ii) for every $E \in \Omega_n^{x^*} \cap \Sigma$

$$\int_{E} |f_{x^*}| d\lambda \le M \int_{E} |g_{x^*}| d\lambda$$

Hence one can easily prove that for every $\varepsilon > 0$

$$|f_{x^*}| < (M + \varepsilon)|g_{x^*}|$$

 λ -a.e. in $\Omega_n^{x^*}$.

From **Claim 4** it follows that if $\omega \in \Omega'_{nx^*} - H_{x^*}$, namely if $g_{x^*}(\omega) = 0$ then λ -a.s. $f_{x^*}(\omega) = 0$; therefore $f_{x^*} = 0$ λ -a.e. in $\Omega'_{nx^*} - H_{x^*}$ and then $f_{x^*} - \vartheta g_{x^*} = 0$ λ -a.e. in $\Omega'_{nx^*} - H_{x^*}$.

We can therefore conclude that $f_{x^*} - \vartheta g_{x^*}$ is λ -null in Ω'_{nx^*} .

Claim 5 - For every $x^* \in \mathcal{X}^*$, $x^*\nu(E) = \int_E \vartheta dx^*\mu$.

Proof. From (p.1) we find

$$|\int_E f_{x^*} d\lambda - \int_E \vartheta g_{x^*} d\lambda| \leq \int_E |f_{x^*} - \vartheta g_{x^*}| d\lambda = 0$$

for every $E \subset \Omega'_{n,x^*}$ and thus for every $E \subset \Omega'_{n,x^*}$

$$\int_E f_{x^*} d\lambda = \int_E \vartheta g_{x^*} d\lambda.$$

Observe also that, since $|g_{x_0}| = 1$ from **Claim 4** $|f_{x_0}| < M + \varepsilon \lambda$ -a.e. in each Ω'_{n,x^*} whence ϑ is λ -a.e. bounded. From Theorem 1, for every $E \in \Sigma$ and for $x^* \in \mathcal{X}^*$ fixed

$$x^*\nu(E\cap\Omega_n^{x^*}) = \int_{E\cap\Omega_n^{x^*}} f_{x^*}d\lambda = \int_{E\cap\Omega_n^{x^*}} \vartheta g_{x^*}d\lambda = \int_{E\cap\Omega_n^{x^*}} \vartheta dx^*\mu.$$

Since $(\Omega_n^{x^*})_n$ is a λ -exhaustion of Ω , for every $E \in \Sigma$

$$\begin{aligned} x^*\nu(E) &= \sum_{i=1}^k x^*\nu(E \cap \Omega_i^{x^*}) + x^*\nu[E \cap (\bigcup_{i=k+1}^{\infty} \Omega_i^{x^*})] = \\ &\sum_{i=1}^k \int_{E \cap \Omega_i^{x^*}} \vartheta dx^*\mu + x^*\nu[E \cap (\bigcup_{i=k+1}^{\infty} \Omega_i^{x^*})], \end{aligned}$$

while

$$\int_E \vartheta dx^* \mu = \int_{E \cap (\bigcup_{i=1}^k \Omega_i^{x^*})} \vartheta dx^* \mu + \int_{E \cap (\bigcup_{i=k+1}^\infty \Omega_i^{x^*})} \vartheta dx^* \mu$$

10

whence

$$|x^*\nu(E) - \int_E \vartheta dx^*\mu| \le |\int_{E \cap (\bigcup_{i=k+1}^\infty \Omega_i^{x^*})} \vartheta dx^*\mu| + |x^*\nu[E \cap (\bigcup_{i=k+1}^\infty \Omega_i^{x^*})]|$$

Since $\lim_{k\to\infty} \lambda[E \cap (\bigcup_{i=k+1}^{\infty} \Omega_i^{x^*})] = 0$ and $|x^*\nu| \ll \lambda$ and $|x^*\mu| \ll \lambda$, it follows that

$$x^*\nu(E) = \int_E \vartheta dx^*\mu$$

for every $E \subset \Omega$.

REMARK 1.

- In [5] Drewnovski studied the existence of a Rybakov control for an X-valued countably additive measure. He showed that in general a Rybakov control does not exist in l.c.t.v.spaces unless some further conditions are satisfied. He also gave a quite strong condition for a f.a.m. to admit a Rybakov control.
- 2. It is easy to mimick the previous proof provided μ admits a control λ such that for some $x^* \in \mathcal{X}^* \lambda(\{\frac{dx^*\mu}{d\lambda} = 0\} = 0$. It could therefore be of interest to investigate whether a f.a.m. μ admitting a control λ always fulfills this condition.

References

- R. G. Bartle–N. Dunford –J. Schwartz "Weak compactness and vector measures", Canad. J. Math. 7 (1955) 289-305.
- 2. J. Brooksunpublished manuscript.

12 Anna Martellotti, Kazimier Musial, Anna Rita Sambucini

- D. Candeloro A. Martellotti "Radon-Nikodym Theorems for vector valued finitely additive measures", Rend. di Mat. Ser. VII, 12 (1992), 1071-1086.
- D. Candeloro A. Martellotti "A Radon-Nikodym Theorem for finitely additive measures", Adv. in Math. 93 (1992), 9-24.
- L. Drewnovski "On control submeasures and measures" Studia Math 50 (1974) 203-224.
- D. R. Lewis "Integration with respect to vector measures" Pacific J. Math. 33 (1970) 157-165.
- 7. A. Martellotti "On integration with respect to l.c.t.v.s.-valued finitely additive measures", to appear on Rend. Circ. Mat. Palermo.
- 8. A. Martellotti A. R. Sambucini "A Radon-Nikodym theorem for multimeasures", to appear on Atti Sem. Mat. Fis. Univ. Modena.
- S. Moemodo–J.J. Uhl "Radon-Nikodym Theorems for the Bochner and Pettis integral" Pacific J. Math. 38 (1971) 531-536.
- K. Musial"A Radon-Nikodym theorem for the Bartle-Dunford- Schwartz integral", Atti Sem. Mat. Fis. Univ. Modena XLI (1993) 227-233.