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1. Introduction

One the most recent development in vector integration is directed to-

ward defining the integral in a locally convex space. This generalization

is not artificial, but follows the current investigation concerning, for

example, Stochastic Processes. The existence of a density is indeed a

fundamental tool for the decomposition theorems that allow to single

out the ”good” integrators in the theory of Stochastic Integration. The
∗ Nota giunta in Redazione il 25/2/1992.

This paper has been partially supported by G.N.A.F.A. of the C.N.R.



2 Anna Martellotti, Kazimier Musia l, Anna Rita Sambucini

setting of locally convex spaces thus makes it possible to develop a

theory of Stochastic integration e.g. in nuclear spaces as the space of

distributions ([2]).

The integral of a scalar function with respect to a vector finitely ad-

ditive measure µ can be defined in several different ways (see [7]).

In particular, one can consider the Bartle–Dunford–Schwartz integral

defined in the following way: let X be a locally convex topological

vector space, (Ω, Σ) a measurable space, µ : Σ → X a finitely additive

measure, f a scalar valued function such that for every x∗ ∈ X∗, f ∈

L1(x∗µ); then f is integrable in the Bartle–Dunford–Schwartz sense if

for every E ∈ Σ there exists xE ∈ X such that

x∗(xE) =
∫

E
fdx∗µ

for every x∗ ∈ X∗. For this integral Musia l[10] has given a Radon-

Nikodym Theorem when µ is countably additive: he obtains the equiv-

alence of the existence of a density with three equivalent conditions

expressing the suitable absolute continuity.

The aim of this paper is to extend the Radon-Nikodym Theorem of

[10] to the case of finitely additive measure’s.

The Radon-Nikodym Theorem here proven makes use of the Moedomo-

Uhl kind of assumption [9].

The first complication arises from the fact that the finite additivity,

due to the lack of the Radon-Nikodym Theorem even in the scalar

setting, does not guarantee under the simple assumption of the absolute

continuity the existence of the scalar density
dx∗ν

dx∗µ
.

Hence one has to assume such existence or some conditions ensuring
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it, like those in [4]. Moreover, since the proof in the countably additive

case is based upon the existence of a lifting, it cannot be mimicked

in the present setting; its role in the proof is somehow replaced by

assuming that µ admits a Rybakov control. This condition, which is

not necessarily satisfied when X is a locally convex topological vector

space even for s-bounded µ (as it is when X is a Banach space), is

shortly discussed at the end of the paper.

2. Preliminaries

Troughout the sequel X will be a sequentially complete locally convex

topological vector space. Let (Ω, Σ) be a measurable space.

(C1) Let ν, µ : Σ → X be two finitely additive measures (f.a.m.’s) such

that for every x∗ ∈ X ∗ the f.a.m.’s x∗µ and x∗ν are b.v. Assume

also that µ admits a Rybakov control λ = |x∗0µ|.

We begin with some definitions.

DEFINITION 1. We shall say that ν is scalarly uniformly absolutely

continuous with respect to µ, and write ν <� µ if for every ε > 0 there

exists δ > 0 such that for every x∗ ∈ X ∗ and E ∈ Σ |x∗µ|(E) < δ yields

|x∗ν|(E) < ε

DEFINITION 2. We shall say that ν is scalarly dominated by µ if

there exists M > 0 such that |x∗ν|(E) ≤ M |x∗µ|(E) for every E ∈ Σ

and x∗ ∈ X ∗.
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DEFINITION 3. We shall say that ν is subordinated to µ if there exists

N > 0 such that for every E ∈ Σ ν(E) ∈ aco{µ(F ), F ∈ E ∩ Σ} where

aco(A) = {
n∑

i=1

αixi, xi ∈ A,
n∑

i=1

|αi| = 1}.

Let P be the family of seminorms generating the topology of X .

We shall say that the range of µ R(µ) is bounded if for every p ∈ P

there exists λp > 0 such that R(µ) ⊂ λp{x ∈ X : p(x) ≤ 1}.

If R(µ) is bounded, we shall set

Pµ = { p

λp
, p ∈ P}

and

X ∗
µ,p = {x∗ ∈ X ∗ : x∗ ≤ p}.

Let

G1,µ = {f : Ω → IR : f ∈ L1(|x∗µ|)∀x∗ ∈
⋃

p∈Pµ

X ∗
µ,p}.

DEFINITION 4. Let f ∈ G1,µ; we shall say that f is µ-integrable

provided for every A ∈ Σ there exists v(A) ∈ X such that

x∗v(A) =
∫

A
fd(x∗µ)

for every x∗ ∈ X ∗. Then we shall set
∫
A fdµ = v(A).

We shall need in the sequel the following finitely additive extension of

a classical theorem

THEOREM 1. (Image Law) Let m, s : Σ → IR be two f.a.m.’s with

bounded variation. If s =
∫

fdm and h : Ω → IR is a Σ-measurable bounded

function, then fh ∈ L1(|m|) and∫
hds =

∫
hfdm (1)
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Proof. As h is bounded, there exists M > 0 such that |h(ω)| ≤ M for

every ω ∈ Ω and thus |hf | ≤ M |f | ∈ L1(|m|): hence the m-integrability

of hf is straightforward. It remains to prove the equality in (1).

Let h be simple: then (1) is obvious. Assume now that h ≥ 0; then the

Lebesgue ladder trick gives a sequence (hn)n of simple functions such

that

hn ≤ hn+1 ≤ h for every n ∈ IN ;

hn converges uniformly to h.

By the m-integrability of f there exists a defining sequence of simple

functions (fn)n such that fn → f in L1(|m|) ([7]). Let sn(·) =
∫
(·) fndm;

then for every ε > 0 there exists n ∈ IN such that for all n > n

|sn − s|(E) =
∫

E
|fn − f |d|m| ≤

∫
Ω
|fn − f |d|m| < ε

for every E ∈ Σ, namely |sn − s|(·) converges to 0 uniformly in Σ.

Let E ∈ Σ be fixed and let us put ai,n(E) =
∫
E hndsi; then, since hn

and fi are simple, ai,n(E) =
∫
E hnfidm. We shall show that for every

i ∈ IN there exists lim
n→∞

ai,n(E) and that lim
i→∞

ai,n(E) exists uniformly

in n ∈ IN . Then it will follow that

lim
i→∞

lim
n→∞

ai,n(E) = lim
n→∞

lim
i→∞

ai,n(E) = lim
i,n→∞

ai,n(E).

Let i ∈ IN be fixed; from the uniform convergence of hn to h we have

that hn si-converges to h and
∫
E hndsi →

∫
E hdsi that is lim

n→∞
ai,n(E)

exists.

Moreover, if n is fixed, as hn is simple, it is easy to check that

|ai,n(E)−
∫

E
hnds| = |

∫
E

hndsi −
∫

E
hnds| ≤ M |si − s|(E)
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and since, as observed, |si − s|(Ω) → 0 it follows that lim
i→∞

ai,n(E) =
∫

E
hnds

uniformly with respect to n.

Then ∫
E

hfdm = lim
i,n→∞

∫
E

hnfidm =
∫

E
hds.

For general bounded h it is enough to decompose h = h+ − h−.

DEFINITION 5. We shall say that a measurable function f : Ω → IR

is λ-null if for every ε > 0 it is λ({|f | > ε}) = 0.

Observe that if f = 0 λ-a.e. then f is λ-null, while the converse is true

if λ is σ-additive, or at least λ fulfills the condition

(σ) the ideal of λ-null sets is closed under countable unions.

We list two straightforward properties of λ-null functions that we will

need in the sequel:

(p.1) f is λ-null iff
∫
E |f |dλ = 0 for every E ∈ Σ;

(p.2) if f is λ-null and g is bounded then fg is λ-null.

3. Radon-Nikodym Theorem

We shall now prove the main theorem.

THEOREM 2. (Radon-Nikodym) Let (Ω, Σ) be a measurable space,

and ν, µ : Σ → X be two f.a.m.’s satisfying (C1) .

Assume that for every ∗ ∈ X∗ there exists a λ-exhaustion (Ωx∗
n )n such

that for every n ∈ IN the set

Sx∗
n = {x∗µ(A)

λ(A)
, A ∈ Ωx∗

n ∩ Σ, λ(A) > 0}
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is bounded for every x∗ ∈ X ∗, and for every n ∈ IN the ranges R(µ|Ωx∗
n ∩Σ)

and R(ν|Ωx∗
n ∩Σ) are closed.

Then the following are equivalent:

i) ν <� µ;

ii) ν is scalarly dominated by µ;

iii) there exists ϑ : Ω → IR bounded and such that

x∗ν(E) =
∫

E
ϑdx∗µ

for every E ∈ Σ and for every x∗ ∈ X ∗;

iv) ν is subordinated to µ.

Proof. The proofs of the implications i) ⇐⇒ii) and iv) =⇒ ii) are

essentially the same as in [6]; also the implication iii) =⇒ iv) can be

proven in the same fashion as in the same paper, by making use of

the results in [7] that are the extensions in the finitely additive setting

of those of Lewis [6]. Hence it only remains to prove the implication

ii) =⇒ iii) .

Claim 1 - For every x∗ ∈ X ∗ there exist
dx∗µn

dλ
,

dx∗νn

dλ
, where

µn = µ|Ωx∗
n ∩Σ and νn = ν|Ωx∗

n ∩Σ.

Proof. We shall show the assertion for (x∗µ, λ) since the proof for

(x∗ν, λ) is analogous.

Let x∗ ∈ X ∗ be fixed and let n ∈ IN . For every a, b ∈ IR let y∗ = ax∗ + bx∗0:

since our assumptions ensure that R(y∗µn) is closed, the signed measure

y∗µn admits a Hahn dcomposition. Then from [3] Lemma 4.3 there
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exists
dx∗µn

d|x∗0µ|
=

dx∗µn

dλ
.

We shall denote f
(n)
x∗ =

dx∗νn

dλ
and g

(n)
x∗ =

dx∗µn

dλ
.

Observe also that, without loss of generality, one can choose a repre-

sentative of g
(n)
x∗0

such that the set {g(n)
x∗0

= 0} is empty, and |g(n)

x∗0
| = 1.

Claim 2 - g
(n)
x∗ is essentially bounded on Ωx∗

n for every n ∈ IN .

This follows immediately from the boundedness of Sx∗
n .

Then define L
(n)
x∗ = supess|g(n)

x∗ | and let Ω(n)
0,x∗ ⊂ Ωx∗

n be such that λ(Ω(n)
0,x∗) = 0

and

|g(n)
x∗ (ω)| ≤ L

(n)
x∗

for every ω 6∈ Ω(n)
0,x∗ . Since (Ωx∗

n )n is a λ-exhaustion, λ(
⋃

n Ω(n)
0,x∗) = 0.

Define Ω′
n,x∗ = Ωx∗

n − Ω(n)

0,x∗
; then λ(

⋃
n Ω′

n,x∗) = λ(Ω) and (Ω′
n,x∗)n is

a λ-exhaustion of Ω. Since the Ωx∗
n ’s are pairwise disjoint, also the

Ω′
n,x∗ ’s are pairwise disjoint, so we can define gx∗ =

∞∑
n=1

g
(n)
x∗ 1Ω′

n,x∗
and

fx∗ =
∞∑

n=1

f
(n)
x∗ 1Ω′

n,x∗
.

Let x∗ ∈ X ∗ be fixed and define Hx∗ = {gx∗ 6= 0}.

Claim 3 - The function
fx∗

gx∗
−

fx∗0

gx∗0

is λ-null in Hx∗ ∩ Ω′
n,x∗.

Proof. From the linearity of the maps x∗ → fx∗ and x∗ → gx∗ , and

from assumption ii) for every E ∈ Σ and for every β1, β2 ∈ IR∫
E
|β1fx∗ + β2fx∗0

|dλ ≤ M

∫
E
|β1gx∗ + β2gx∗0

|dλ (2)

Let n be fixed and let Ω̃n,x∗ = Ω′
n,x∗ ∩Hx∗ . Then gx∗ is bounded in

Ω̃n,x∗ and therefore there exists a sequence of simple functions (γ(n)
x∗,k)k
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that converges uniformly to g
(n)
x∗ in Ω̃n,x∗ ; also, since in Ω̃n,x∗ gx∗ 6= 0

for k large enough γ
(n)
x∗,k 6= 0 in Ω̃n,x∗ .

Since γ
(n)
x∗,k, gx∗0

are simple functions, it is possible to decompose Ω̃n,x∗

into finitely many subsets where both these functions are constant.

Let (E(j)
n )r(x∗,k)

j=1 be such a decomposition. Taking β1 =
1

γ
(n)
x∗,k(E(j)

n )
and

β2 = − 1

gx∗0
(E(j)

n )
in (2) we then find

∫
E∩E

(j)
n

|
fx∗

γ
(n)
x∗,k

−
fx∗0

gx∗0

|dλ ≤ M

∫
E∩E

(j)
n

|
gx∗

γ
(n)
x∗,k

− 1|dλ

for every j and since the E
(j)
n ’s are finitely many, for every E ⊂ Ω̃n,x∗∫

E
|
fx∗

γ
(n)
x∗,k

−
fx∗0

gx∗0

|dλ ≤ M

∫
E
|
gx∗

γ
(n)
x∗,k

− 1|dλ (3)

By taking the limit for k →∞ in (3) we then obtain∫
E
|
fx∗

gx∗
−

fx∗0

gx∗0

|dλ = 0

for every E ⊂ Ω̃n,x∗ . Then (p1) implies Claim 3.

Let ϑ =
fx∗0

gx∗0

. From (p. 2) the function fx∗ − ϑgx∗ is λ-null in Ω̃n,x∗ .

Claim 4 - For every ε > 0 |fx∗ | ≤ (M + ε)|gx∗ | λ-a.e. in Ωx∗
n , where

M is that of the scalar domination.

Proof. Indeed from the assumption ii) for every E ∈ Ωx∗
n ∩ Σ∫

E
|fx∗ |dλ ≤ M

∫
E
|gx∗ |dλ.

Hence one can easily prove that for every ε > 0

|fx∗ | < (M + ε)|gx∗ |
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λ-a.e. in Ωx∗
n .

From Claim 4 it follows that if ω ∈ Ω′
nx∗ −Hx∗ , namely if gx∗(ω) = 0

then λ-a.s. fx∗(ω) = 0; therefore fx∗ = 0 λ-a.e. in Ω′
nx∗ −Hx∗ and

then fx∗ − ϑgx∗ = 0 λ-a.e. in Ω′
nx∗ −Hx∗ .

We can therefore conclude that fx∗ − ϑgx∗ is λ-null in Ω′
nx∗ .

Claim 5 - For every x∗ ∈ X ∗, x∗ν(E) =
∫
E ϑdx∗µ.

Proof. From (p.1) we find

|
∫

E
fx∗dλ−

∫
E

ϑgx∗dλ| ≤
∫

E
|fx∗ − ϑgx∗ |dλ = 0

for every E ⊂ Ω′
n,x∗ and thus for every E ⊂ Ω′

n,x∗∫
E

fx∗dλ =
∫

E
ϑgx∗dλ.

Observe also that, since |gx∗0
| = 1 from Claim 4 |fx∗0

| < M + ε λ-a.e.

in each Ω′
n,x∗ whence ϑ is λ -a.e. bounded. From Theorem 1, for every

E ∈ Σ and for x∗ ∈ X ∗ fixed

x∗ν(E ∩ Ωx∗
n ) =

∫
E∩Ωx∗

n

fx∗dλ =
∫

E∩Ωx∗
n

ϑgx∗dλ =
∫

E∩Ωx∗
n

ϑdx∗µ.

Since (Ωx∗
n )n is a λ-exhaustion of Ω, for every E ∈ Σ

x∗ν(E) =
k∑

i=1

x∗ν(E ∩ Ωx∗
i ) + x∗ν[E ∩ (

∞⋃
i=k+1

Ωx∗
i )] =

k∑
i=1

∫
E∩Ωx∗

i

ϑdx∗µ + x∗ν[E ∩ (
∞⋃

i=k+1

Ωx∗
i )],

while ∫
E

ϑdx∗µ =
∫

E∩(
⋃k

i=1
Ωx∗

i )
ϑdx∗µ +

∫
E∩(

⋃∞
i=k+1

Ωx∗
i )

ϑdx∗µ
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whence

|x∗ν(E)−
∫

E
ϑdx∗µ| ≤ |

∫
E∩(

⋃∞
i=k+1

Ωx∗
i )

ϑdx∗µ|+ |x∗ν[E ∩ (
∞⋃

i=k+1

Ωx∗
i )]|.

Since lim
k→∞

λ[E ∩ (
∞⋃

i=k+1

Ωx∗
i )] = 0 and |x∗ν| � λ and |x∗µ| � λ, it fol-

lows that

x∗ν(E) =
∫

E
ϑdx∗µ

for every E ⊂ Ω.

REMARK 1.

1. In [5] Drewnovski studied the existence of a Rybakov control for an

X -valued countably additive measure. He showed that in general a

Rybakov control does not exist in l.c.t.v.spaces unless some further

conditions are satisfied. He also gave a quite strong condition for

a f.a.m. to admit a Rybakov control.

2. It is easy to mimick the previous proof provided µ admits a control λ

such that for some x∗ ∈ X ∗ λ({dx∗µ

dλ
= 0} = 0. It could therefore

be of interest to investigate whether a f.a.m. µ admitting a control

λ always fulfills this condition.
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