
INTERNATIONAL
PUBLICATIONS (USA)

Communications on Applied Nonlinear Analysis
Volume 16 (2009), Number 4

The Perron Integral of order Two in Riesz Spaces via Peano
Derivatives

Antonio Boccuto
Università degli Studi di Perugia

Dipartimento di Matematica e Informatica
via Vanvitelli, 1

I-06123 Perugia, Italy
boccuto@yahoo.it, boccuto@dipmat.unipg.it

Anna Rita Sambucini
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1 Introduction

A Perron-type integral of higher order was introduced by R. D. James in [11, 12] to solve
the problem of recovering the coefficients of convergent trigonometric series (see also [17]).
A similar Perron integral was defined by P. S. Bullen in [9]. The difference between these
two approaches is that James defined his integral in terms of generalized Riemann symmetric
derivatives by major and minor functions satisfying ”boundary-type” conditions while in [9]
the Peano derivatives and some kind of an ”initial” conditions were used instead.

Some results related to the theory of the Perron integral of order two in the context of Riesz
spaces were given in [4, 6, 7], following the approach of [11], together with some applications
to Fourier series and stochastic processes. In particular in [6] we obtained an integration by
parts formula for this type of the Perron integral of order two. However attempts to extend
this study of the Perron integral, defined in terms of the Riemann symmetric derivatives,
to the case of higher orders meet some difficulties connected in particular with a problem
whether (P k−1)-integrability implies (P k)-integrability. This problem is still open for k ≥ 3
in the case of Riesz-space-valued functions.

An alternative is the Bullen approach based on using the Peano derivatives instead of the
Riemann ones. In the present paper we concentrate on the second order Perron integral based
on the Peano derivatives. This permits us to obtain some results similar to those we have
got in [6], under essentially weaker assumptions. Namely the hypotheses of boundedness of
the derivatives of major and minor functions and super Dedekind completeness of the Riesz
space, assumed in [6], can be dropped.

This paper is structured as follows: in Section 2 we introduce some preliminary notions, in
particular we remind a concept of the global limit, very important for the whole theory. The
second order Perron integral with respect to the Peano derivatives is introduced in Section 3.
In Section 4 we compare this integral with some other integrals, in particular with the one
considered in [6]. Finally in Section 5 we prove the integration by parts formula.

2 Preliminaries

For all the definitions related to Riesz spaces and their properties, the Maeda-Ogasawara-
Vulikh representation theorem and the fundamental concepts of Differential Calculus we refer
to [6, Sections 2,3,4]. We say that R is an algebra if it is a Dedekind complete Riesz space
endowed with a structure of ”product”, satisfying distributive laws and compatibility with
order. From now on, R is always an algebra, [a, b] is a fixed compact interval of the real line
R and E is a nonempty subset of [a, b]. We denote by Γ the set of all positive real-valued
functions, defined on [a, b] . Furthermore, we say that a property is fulfilled nearly everywhere
(shortly, n. e.) in [a, b] if it is satisfied in the complement of a countable subset of ]a, b[.

The concept of convexity is formulated as in the classical case (for references see for
example [8]). We say that f is 0-convex in [a, b] if f(x) ≥ 0 for every x ∈ [a, b]; 1-convex in
[a, b], if and only if f is increasing in [a, b]; 2-convex, if it is convex.

We remind the concepts of (g)-limit (global limit), (g)-limsup and (g)-liminf (see [6, Defi-
nitions 3.1, 3.2]).

Let φ(x, h) (x ∈ [a, b] and h ∈ R\{0}) be an R-valued function. We say that a global limit
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(g) limh→0 φ(x, h) exists in E and is equal to φ̂(x) if

inf
γ∈Γ

[
sup

{ ∣∣∣φ(x, h)− φ̂(x)
∣∣∣ : x ∈ E, 0 < |h| ≤ γ(x)

}]
= 0.

We say also that

(g) lim sup
h→0

φ(x, h) = φ(x) ((g) lim inf
h→0

φ(x, h) = φ(x))

is a global limsup (global liminf) in E if there is an (o)-net (pγ)γ∈Γ (that is a net with pγ ↓ 0)
such that for all γ ∈ Γ and x ∈ E we have:

0 ≤ sup {φ(x, h) : 0 < |h| ≤ γ(x)} − φ(x) ≤ pγ

(0 ≤ φ(x)− inf {φ(x, h) : 0 < |h| ≤ γ(x)} ≤ pγ).

Obviously (g) limh→0 φ(x, h), when it exists, is the common value of
(g) lim suph→0 φ(x, h) and (g) lim infh→0 φ(x, h).

Now we define, for an R-valued function φ(x, h), the concept of o(hk). We say that φ(x, h)
is of the type o(hk), k ≥ 0, in E if there is an (o)-net (pγ)γ∈Γ such that

sup{|φ(x, h)| : x ∈ E, |h| ≤ γ(x)} ≤ |h|k pγ (1)

for all γ ∈ Γ and x ∈ E, and we write φ(x, h) ∈ ok(E) or φ(x, h) = o(hk) in E.
Observe that (1) is equivalent to the condition

inf
γ∈Γ

[
sup

{
|φ(x, h)|
|h|k

: x ∈ E, 0 < |h| ≤ γ(x)

}]
= 0, (2)

that is in E

(g) lim
h→0

|φ(x, h)|
|h|k

= 0.

3 Peano derivatives and Perron integral

We apply the above notion of the global limit to define global derivatives.
A function f : [a, b] → R is (g)-differentiable in E if there exists a function f ′ : E → R

such that

inf
γ∈Γ

[
sup

{ ∣∣∣∣f(x+ h)− f(x)

h
− f ′(x)

∣∣∣∣ : x ∈ E, 0 < |h| ≤ γ(x)

}]
= 0.

We use the following notation given for example in [8] for the real-valued case: Dkf
means the Riemann symmetric derivative, D(k)f the Peano derivative, while f (k) is the usual
derivative. Namely, f ′ denotes in our case the usual global derivative of f and f ′′ the global
derivative of f ′.
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In [6, Definition 6.1] we introduced the Riemann symmetric derivative of order 1 as the
usual (g)-derivative and the one of order 2 as the global limit

D2f(x) := (g) lim
h→0

f(x+ h)− 2f(x) + f(x− h)

h2
.

The Peano derivative of order 0 and 1 D(0)f and D(1)f are f itself and its global derivative
respectively.

Remark 3.1. Using this fact, all the results contained in [6] which involve D1f derivatives
can be applied also to D(1)f derivatives.

If D(1)f exists, the Peano derivative of order 2 in E is

D(2)f(x) := (g) lim
h→0

2

h2
{f(x+ h)− f(x)− h f ′(x)} , x ∈ E, (3)

when it exists. Moreover, we define also the Peano-Dini derivatives by setting

D(2)f(x) := (g) lim sup
h→0

2

h2
{f(x+ h)− f(x)− h f ′(x)} , x ∈ E; (4)

D(2)f(x) := (g) lim inf
h→0

2

h2
{f(x+ h)− f(x)− h f ′(x)} , x ∈ E. (5)

The Riemann symmetric and the Peano derivatives are in general different. It is well
known in the real case. See, for example, the Heaviside function

H(x) :=

 1 if 0 < x ≤ 1,
0 if x = 0,
−1 if −1 ≤ x < 0.

For this function D2H(x) = 0 in [−1, 1]. However, H is not continuous at 0, and, a fortiori,
H is not differentiable at 0. According to our terminology it has not global second Peano
derivative in [−1, 1] (see also [4]).

In the following proposition we identify φ(x, h) with the corresponding element of C∞(Ω),
where Ω is a compact extremally disconnected topological space as in the Maeda-Ogasawara-
Vulikh representation theorem (see [2, Theorem 3]), and C∞(Ω) is the class of all continuous
extended real-valued functions, assuming the values ±∞ at most on a nowhere dense subset
of Ω.

In this terms we have the following result:

Proposition 3.2. If (g) lim infh→0 φ(x, h) ≥ φ(x) ( (g) lim suph→0 φ(x, h) ≤ φ(x) ) in E,
then

lim inf
h→0

[φ(x, h)(ω)] ≥ φ(x)(ω) ( lim sup
h→0

[φ(x, h)(ω)] ≤ φ(x)(ω) ) in E

for ω in the complement of a meager subset of Ω.
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Proof. We prove the assertion only in the case of the liminf, since the case of the limsup
is analogous. By [6, Proposition 3.4], there is an (o)-net (pγ)γ∈Γ with

φ(x, h) ≥ φ(x)− pγ (6)

for each γ ∈ Γ, x ∈ E and whenever 0 < |h| ≤ γ(x), and so

φ(x, h)(ω) ≥ φ(x)(ω)− pγ(ω)

for any ω ∈ Ω, γ ∈ Γ, x ∈ E and 0 < |h| ≤ γ(x). The assertion follows again by [6, Propo-
sition 3.4], since, by the Maeda-Ogasawara-Vulikh representation theorem (see [2]), the net
(pγ(ω))γ∈Γ is an (o)-net in the complement of a meager subset of Ω. �

We now prove the following version of the Taylor formula.

Theorem 3.3. Let f : [a, b]→ R have (g)-derivative of order 2 in [a, b]. Then

f(x+ h) = f(x) + h f ′(x) +
h2

2
f ′′(x) + o(h2) in [a, b]. (7)

Proof. By hypothesis there is an (o)-net (pγ)γ∈Γ such that

|f ′(x+ h)− f ′(x)− h f ′′(x)| ≤ |h| pγ

whenever γ ∈ Γ, x ∈ [a, b], 0 < |h| ≤ γ(x). The (g)-derivative f ′ is supposed to be (g)-
differentiable and so it is continuous and hence Riemann integrable. By the Fundamental
Theorem of Calculus applied to the Riemann integral of f ′ ([3, Theorem 4.28]) we get, for
such γ, x and h > 0,∣∣∣∣∣

∫ h

0

f ′(x+ τ) dτ − hf ′(x)−

(∫ h

0

τdτ

)
f ′′(x)

∣∣∣∣∣ ≤
(∫ h

0

τdτ

)
pγ ,

that is ∣∣∣∣f(x+ h)− f(x)− hf ′(x)− h2

2
f ′′(x)

∣∣∣∣ ≤ h2

2
pγ .

The case h < 0 is analogous. This completes the proof. �

The definition of major functions is analogous to the corresponding one given in [6, Defi-
nition 6.2], with the difference that we deal with the Peano-Dini derivatives rather than with
the Riemann-Dini symmetric derivatives and that here we do not require boundedness of the
(g)-derivatives of order 1.

Definition 3.4. Given f : [a, b]→ R, we say that Ψ : [a, b]→ R is a major function of order
1 (2) for f if it is (g)-continuous ((g)-differentiable) in [a, b] and

3.4.1) Ψ(a) = 0 (Ψ(a) = Ψ′(a) = 0);

3.4.2) (g) lim inf
h→0

Ψ(x+ h)−Ψ(x)

h
≥ f(x) (D(2)Ψ(x) ≥ f(x) ) nearly everywhere in ]a, b[.
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Let k = 1, 2. A function Φ is a minor function of order k for f if −Φ is a major function of
order k for −f .

The following proposition is useful in the sequel.

Proposition 3.5. Let T : [a, b] → R, T = Ψ − Φ, where Ψ and Φ are a major and minor
function of f of order k, respectively. Then T is l-convex, 0 ≤ l ≤ k.

Proof. The proof proceeds as the one of [6, Proposition 6.3], suitably modified. �

We now introduce the Perron integral of order 1 and 2 based on the Peano-Dini derivatives.

Definition 3.6. Let k = 1, 2. A function f : [a, b] → R is said to be Perron integrable of
order k (shortly P k-integrable) in [a, b], if f has both major and minor functions of order k
and

inf
Ψ∈Gk

Ψ(b) = sup
Φ∈Kk

Φ(b) ∈ R,

where Gk andKk denote the class of all major and minor functions of order k for f , respectively.
The above common value is called P k-integral of f on [a, b] and is denoted by

(P k)

∫ b

a

f(x) dx.

Remark 3.7. The correctness of the above definition follows from Proposition 3.5 which im-
plies that for any function f the inequality infΨ∈Gk Ψ(b) ≥ supΦ∈Kk

Φ(b) holds. If infΨ∈Gk Ψ(b) =
supΦ∈Kk

Φ(b), then for all x ∈ [a, b] we have: infΨ∈Gk Ψ(x) = supΦ∈Kk
Φ(x), since Ψ − Φ is

increasing in [a, b]. Thus the function Ik : [a, b]→ R is defined by

Ik(x) := inf
Ψ∈Gk

Ψ(x) = sup
Φ∈Kk

Φ(x) = (P k)

∫ x

a

f(t) dt

and is called the P k-integral function associated to f . The value Ik(b) of course coincides
with the value of the P k-integral of f on [a, b].

Proposition 3.8. If Φ ∈ K2,Ψ ∈ G2, then I2 − Φ and Ψ − I2 are R+
0 -valued j-convex

functions, j = 0, 1, 2.

Proof. The proof of the 2-convexity is the same as the one given in [7], since it does not
depend on the type of the derivative (Riemann symmetric or Peano) we are using. �

4 Comparison with other integrals

First of all we note that every Riemann integrable (Ri-integrable) (see [5]) function f : [a, b]→ R
is P 1-integrable, and its Riemann integral coincides with the Perron integral, i.e,

(Ri)

∫ x

a

f(t) dt = I1(x) for all x ∈ [a, b].

It is an immediate consequence of ([6, Proposition 7.7]), since the Peano and the usual global
derivative of order 1 coincide.

Now we compare P 1-integral and P 2-integral (for the real case, see [1, Corollary 2.5]).
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Theorem 4.1. If f : [a, b]→ R is P 1-integrable, then f is P 2-integrable too, and

I2(b) = (P 2)

∫ b

a

f = (P 1)

∫ b

a

[
(P 1)

∫ x

a

f(t) dt

]
dx.

Proof. Let ψ be any major function of order 1 for f in [a, b]. We claim that its Ri-integral
function Ψ is a major function of order 2 for f .

Without loss of generality, put h > 0. Since ψ is a major function of order 1 for f , by (6)
of Proposition 3.2 there exist a set E ⊂]a, b[ such that ]a, b[\E is countable and an (o)-net
(pγ)γ∈Γ such that

ψ(x+ t)− ψ(x) ≥ t f(x)− t pγ (8)

for all γ ∈ Γ, x ∈ E and whenever 0 < t ≤ γ(x). Choose now h with 0 < h ≤ γ(x) and take
in both sides of (8) the Riemann integral as t varies between 0 and h. We obtain:

Ψ(x+ h)−Ψ(x)− hΨ′(x) ≥ h2

2
f(x)− h2

2
pγ , x ∈ E, (9)

where Ψ denotes the Riemann integral function associated to ψ. The claim follows from (9).
Analogously it is possible to prove that, if φ is a minor function of order 1 of f , then its
(Riemann) integral function Φ is a minor function of order 2 of f .

We write inf1 when we deal with the class of major functions of order 2 for f which are
the integral function of some major function ψ of order 1 for f . Since ψ − I1 is positive and
increasing ([6, Proposition 7.5] and Remark 3.1), we get

0 ≤ inf
Ψ∈G2

Ψ(x)−
∫ x

a

I1(t) dt ≤ inf
1

Ψ(x)−
∫ x

a

I1(t) dt ≤ inf
ψ∈G1

[∫ x

a

{ψ(t)− I1(t)} dt
]
≤

≤ (b− a) inf
ψ∈G1

[
sup
t∈[a,b]

{ψ(t)− I1(t)}

]
= (b− a) inf

ψ∈G1
{ψ(b)− I1(b)} = 0.

This shows that

inf
Ψ∈G2

Ψ(x) =

∫ x

a

I1(t) dt.

Similarly we can prove that

sup
Φ∈K2

Φ(x) =

∫ x

a

I1(t) dt

From this the assertion follows. �

It is easy to understand that the inclusion of P 1-integral into P 2-integral is a strict one.
An example can be given in the real-valued case using the fact that P 1-integral functions
are continuous while the derivatives of P 2-integral functions can fail to be continuous. Nev-
ertheless these derivatives are always P 1-integrable as it is seen in the following theorem,
whose proof is as in [7, Lemma 1] (indeed it is enough to observe once again that the Peano
(g)-derivative of order 1 coincides with the usual (g)-derivative).
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Theorem 4.2. If f : [a, b] → R is P 2-integrable, then I ′2 exists and is P 1-integrable. More-
over, if Ψ (resp. Φ) is a major (minor) function of order 2 for f , then

Ψ′(x)− I ′2(x) ≥ 0 (I ′2(x)− Φ′(x) ≥ 0) for all x ∈ [a, b].

Now we discuss the relation between our P 2-integral and the second order Perron inte-
gral defined in [6] using the Riemann symmetric derivative. First we note that, as it was
already mentioned in Introduction, we have assumed in [6], due to some technical reasons,
the boundedness of the derivatives of the major and minor functions of order 2. So, under this
assumption, the integral defined in [6] does not cover the P 2-integral of the present paper.

But in general, if we equalize the assumptions on the derivatives of the major and minor
functions, by assuming only their existence, as it is done here in Definition 3.6, then the
second order Perron integral of [6] defined by the Riemann-Dini symmetric derivatives (let us
agree to call this integral, under the above assumption, P 2

s -integral) is strictly more general
than the one based on the Peano-Dini derivatives. We shall see this below in the real-valued
case using some example given in [15].

Example 4.3. We note first that, if a function f is (g)-differentiable in [a, b] (pointwise dif-
ferentiable everywhere on [a, b], in the real-valued case), then its derivative f ′ is P 1-integrable
on any subinterval of [a, b] and f is the P 1-integral function for f ′. Then the expression (3)
defining the second order Peano derivative of f can be rewritten in the form

lim
h→0

2

h2

{∫ x+h

x

f ′(t) dt− h f ′(x)

}
.

This limit in fact defines Cesàro derivative (C-derivative) of f ′ (see [1] and [10]), i.e., D(2)f(x) =
CDf ′(x). We get similar equalities for the upper and the lower derivatives defined by (4) and
(5):

D(2)f(x) = CDf ′(x), D(2)f(x) = CDf ′(x). (10)

Moreover differentiability of f in fact coincides with Cesàro continuity (C-continuity) of f ′.
This allows us to state that if M is a major function for a function f in [a, b], in the sense
of the Burkill Cesàro-Perron integral (CP -integral) of order 1 of [10], then (P 1)

∫ x
a
M(t) dt

is a major function of order 2, according to Definition 3.4, for f . In the same way, if m is a
CP -minor function of order 1 for f in [a, b], then (P 1)

∫ x
a
m(t) dt is a minor function of order

2 for f . It is clear that if M and m are close to each other, then so are their integrals. This
implies that, if f is CP -integrable of order 1 and I1 is its CP -integral function, then f is also
P 2-integrable and (P 1)

∫ x
a
I1(t) dt is its P 2-integral function.

In the opposite direction, if Ψ and Φ are a major and a minor function of order 2, according
to Definition 3.4, for a function f , then by (10) Ψ′ and Φ′ are a CP -major and a CP -minor
function of order 1 of f , respectively. Now we use a fact, proved in [16], that if a function
has at least one CP -major function and one CP -minor function, then it is CP -integrable. So
P 2-integrability implies CP -integrability of order 1 and if I2 is the P 2-integral function for
f , then I ′2 (see Theorem 4.2) is the CP -integral function for f . Hence we can state that our
P 2-integral is equivalent, at least in the real-valued case, to the Burkill CP -integral of order
1 of [10], meaning by this that the respective classes of integrable functions coincide and the
relation between the integral functions is as it is described above.
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We are ready now to use the results of [15] where an example of a continuous function F
on [0, 1] was constructed with the following properties:

(i) F (0) = 0;

(ii) f(x) := D2
s

(∫ x
0
F (t) dt

)
exists everywhere on ]0, 1[;

(iii) f is integrable in the sense of the general Denjoy integral of order 1 (D-integral, see [14])
with the D-integral function Q(x) := (D)

∫ x
0
f(t) dt;

(iv) the difference F −Q is a singular Cantor-type function.

We show now that the function f gives the desired example. First of all, the properties (i)
and (ii) show that

∫ x
0
F (t) dt plays the role of both a major and a minor function in the

sense of the P 2
s -integral. So f is P 2

s -integrable and
∫ x

0
F (t) dt is its P 2

s -integral function. At
the same time this function f cannot be P 2-integrable. Indeed if it were, it would be also
CP -integrable of order 1 and F would be its CP -integral function. But it is known (see
[16]) that the CP -integral is compatible with the D-integral, i.e., if a function is both D- and
CP -integrable, then the values of the two integrals coincide. So in our case the D-integral
function of f would be F . This contradicts to (iii) and (iv). Therefore the function f is
P 2
s -integrable but it is not P 2-integrable.

5 Integration by parts formula for P 2-integral

Our proof of the integration by parts formula is based on Theorems 4.1 and 4.2 and on two
technical lemmas.

Lemma 5.1. Let f : [a, b] → R be P 2-integrable with integral function I2 and let Ψ, Φ be
a major and a minor function of order 2 for f , respectively. Assume that g : [a, b] → R is
a (g)-differentiable function with (g)-continuous derivative such that g ≥ 0, g′ ≥ 0 in [a, b].
Then functions

S(t) = Ψ(t)g(t)− (P 1)

∫ t

a

Ψg′,

Z(t) = Φ(t)g(t)− (P 1)

∫ t

a

Φg′,

t ∈ [a, b] (11)

are a major and a minor function of order 2 for fg + I ′2g
′, respectively.

Proof. We prove the assertion only for S, since the other case is analogous. Observe that,
since Ψ · g′ is (g)-continuous, from the Torricelli-Barrow theorem ([3, Proposition 4.37]) and
3.4.1) applied to Ψ′ we have:

S′(t) = Ψ′(t) g(t) + Ψ(t) g′(t)−Ψ(t) g′(t) = Ψ′(t) g(t),
S(a) = S′(a) = 0.

for all t ∈ [a, b]. (12)
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It remains to prove 3.4.2), i.e., D(2)S(x) ≥ f(x)g(x) + I ′2(x)g′(x). Analogously as in [6,
Theorem 8.5], we fix now x ∈ [a, b], and define for every t ∈ [a, b]:

P (t) = Ψ(x) + (t− x)Ψ′(x); (13)

Ψ(t) = Ψ(t)− P (t); Ψ(x) = Ψ(x)− P (x) = 0; (14)

S(t) = Ψ(t)g(t)− (P 1)

∫ t

x

Ψ g′; (15)

V (t) = S(t)− S(t) = [Ψ(t)−Ψ(t)]g(t)− (P 1)

∫ t

a

Ψg′ + (P 1)

∫ t

x

Ψ g′ (16)

(14)
= P (t)g(t)− (P 1)

∫ t

a

Pg′ − (P 1)

∫ x

a

Ψg′.

Then, by (13) we have P ′(t) = Ψ′(x). So for every t ∈ [a, b] we get:

V ′(t) = P ′(t) g(t) + P (t)g′(t)− P (t)g′(t) = Ψ′(x) g(t);

V ′′(t) = Ψ′(x) g′(t); (17)

S(x) = Ψ(x) g(x) = 0;

V (x) = S(x)− S(x) = S(x).

We now give a ”Taylor-type” formula up to the order 2 for the functions S and V . To
this end, we estimate the last summand on the right hand side of (16).

By (g)-differentiability of Ψ, there exists an (o)-net (ργ)γ∈Γ with the property: for every
γ ∈ Γ and whenever x, t ∈ [a, b] with |t− x| ≤ γ(x) we have

|Ψ(t)| = |Ψ(t)−Ψ(x)− (t− x)Ψ′(x)| ≤ |t− x| ργ . (18)

Moreover, there is K0 ∈ R+ such that, for every τ ∈ [a, b], |g′(τ)| ≤ K0. Using this, we
obtain:∣∣∣∣∣(P 1)

∫ x+h

x

Ψ(τ) g′(τ) dτ

∣∣∣∣∣ =

∣∣∣∣∣(P 1)

∫ x+h

x

[Ψ(τ)−Ψ(x)− (τ − x)Ψ′(x)]g′(τ) dτ

∣∣∣∣∣ ≤
≤

[
(P 1)

∫ x+h

x

(τ − x)dτ

]
K0 ργ =

h2

2
K0 ργ

whenever x ∈]a, b[ and 0 < h ≤ γ(x). Analogously we prove that for such x’s and h’s we have:∣∣∣∣(P 1)

∫ x

x−h
Ψ(τ) g′(τ) dτ

∣∣∣∣ ≤ h2

2
K0 ργ .

Hence,

(S −Ψ g)(t) = o((t− x)2) in [a, b]. (19)

Furthermore, note that g is Lipschitz, and so it follows that the net (ργ)γ∈Γ in (18) satisfies

|Ψ(t)| |g(t)− g(x)| ≤ L̃ |t− x|2 ργ (20)
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for any γ ∈ Γ and t ∈ [a, b] with 0 < |t− x| ≤ γ(x), where L̃ is a suitable positive element of
R. Hence, from (19), for all t ∈ [a, b] we get:

S(t) = g(x)Ψ(t) + o((t− x)2) = g(x) [Ψ(t)−Ψ(x)− (t− x)Ψ′(x)] + o((t− x)2). (21)

Now, using (17), we can apply the Taylor formula to V and obtain, for all t ∈ [a, b]:

V (t) = V (x) + (t− x)V ′(x) +
(t− x)2

2
V ′′(x) + o((t− x)2) = (22)

= S(x) + (t− x)Ψ′(x) g(x) +
(t− x)2

2
Ψ′(x) g′(x) + o((t− x)2).

From (21) and (22) we have

S(t) = V (t) + S(t) = S(x) + (t− x)Ψ′(x) g(x) + (23)

+
(t− x)2

2
Ψ′(x) g′(x) + g(x) [Ψ(t)−Ψ(x)− (t− x)Ψ′(x)] + o((t− x)2).

From (12) and (23), for each t ∈ [a, b], t 6= x we get:

2

(t− x)2
[S(t)− S(x)− (t− x)S′(x)] = Ψ′(x) g′(x) + g(x) ·

· 2 [Ψ(t)−Ψ(x)− (t− x)Ψ′(x)]

(t− x)2
+ o((t− x)0).

Taking the (g)-liminf, for any x ∈ [a, b] we have:

D(2)S(x) = g(x)D(2)Ψ(x) + Ψ′(x)g′(x).

Since Ψ is a major function of order 2 for f and g(x) ≥ 0 for every x ∈ [a, b], there exists a
set E ⊂]a, b[ such that ]a, b[\E is countable and for every x ∈ E we get, thanks to Theorem
4.2,

D(2)S(x) ≥ f(x) g(x) + Ψ′(x)g′(x) ≥ f(x) g(x) + I ′2(x) g′(x),

since g′(x) ≥ 0 in [a, b]. From this, since Ψ is a major function of order 2 for f , it follows that
S is a major function of order 2 for fg + I ′2g

′. �

Lemma 5.2. Let f : [a, b] → R be P 2-integrable with integral function I2 and let Ψ, Φ be a
major and a minor function of order 2 for f , respectively. Assume that g : [a, b] → R is a
(g)-differentiable function with (g)-continuous derivative such that g ≥ 0, g′ ≥ 0 in [a, b]. Let
S and Z be defined by (11). Then

S(b)− I2(b)g(b) + (P 1)

∫ b

a

I2g
′ ≥ 0;

Z(b)− I2(b)g(b) + (P 1)

∫ b

a

I2g
′ ≤ 0.
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Proof. Thanks to Lemma 5.1 the functions S and Z defined by (11) are a major and
a minor function of order 2 for fg + I ′2g

′, respectively. By properties of major and minor
functions of order 2, we get S(b)− Z(b) ≥ 0, that is

Ψ(b)g(b)− (P 1)

∫ b

a

Ψg′ ≥ Φ(b)g(b)− (P 1)

∫ b

a

Φg′,

and so

[Ψ(b)− Φ(b)]g(b)− (P 1)

∫ b

a

(Ψ− Φ)g′ ≥ 0.

Therefore,

[Ψ(b)− I2(b)]g(b) + [I2(b)− Φ(b)]g(b)− (P 1)

∫ b

a

(Ψ− I2)g′ − (P 1)

∫ b

a

(I2 − Φ)g′ ≥ 0.

Since I2 − Φ is positive and increasing (by Proposition 3.8) and g, g′ ≥ 0 in [a, b], we get:

[Ψ(b)− I2(b)]g(b)− (P 1)

∫ b

a

(Ψ− I2)g′ ≥ −[I2(b)− Φ(b)]g(b) + (P 1)

∫ b

a

(I2 − Φ)g′ ≥

≥ −[I2(b)− Φ(b)]g(b).

If we take the supremum over Φ ∈ K2, we obtain:

[Ψ(b)− I2(b)]g(b)− (P 1)

∫ b

a

(Ψ− I2)g′ ≥
(

sup
Φ∈K2

[Φ(b)− I2(b)]

)
g(b) = 0.

Hence,

S(b)− I2(b)g(b) + (P 1)

∫ b

a

I2g
′ = [Ψ(b)− I2(b)]g(b)− (P 1)

∫ b

a

(Ψ− I2)g′ ≥ 0,

obtaining the first inequality of the assertion. The proof of the other inequality is analogous.
�

Finally we are ready to prove the integration by parts formula.

Theorem 5.3. Let f : [a, b] → R be P 2-integrable, I2 be the integral function associated
to f , I ′2 be its derivative, and let g : [a, b] → R be (g)-differentiable in [a, b], with Lipschitz
derivative g′ on [a, b]. Then, fg is P 2-integrable, and

(P 2)

∫ b

a

fg + (P 1)

∫ b

a

[
(P 1)

∫ x

a

I ′2(t)g′(t)dt

]
dx = I2(b)g(b)− (P 1)

∫ b

a

I2g
′.

Proof. First of all, we prove the assertion when g(x) ≥ 0 and g′(x) ≥ 0 for each x ∈ [a, b].
In order to prove P 2-integrability of fg, we first show that fg + I ′2g

′ is P 2-integrable.
Let F and S be the classes of all major and minor functions of order 2 for fg + I ′2g

′

respectively. Let F1 and S1 be the subclasses of the following type:

S(x) = Ψ(x)g(x)− (P 1)

∫ x

a

Ψg′, Z(x) = Φ(x)g(x)− (P 1)

∫ x

a

Φg′, x ∈ [a, b], (24)
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(where Ψ, Φ are major and minor functions of order 2 for f). Note that the inclusions F1 ⊂ F
and S1 ⊂ S was proved in Lemma 5.1.

Now, fix arbitrarily Ψ ∈ G2 and let S be as in (24). For all x ∈ [a, b] we have

S(x)− I2(x)g(x) + (P 1)

∫ x

a

I2g
′ = Ψ(x)g(x)− I2(x)g(x)− (P 1)

∫ x

a

[Ψ(t)− I2(t)]g′(t)dt.

From this, by virtue of Lemma 5.2, since g, g′ ≥ 0 in [a, b] and Ψ−I2 is positive and increasing
(see also [6, Theorem 7.5]), it follows that

0 ≤ inf
S∈F1

(
S(b)− I2(b)g(b) + (P 1)

∫ b

a

I2g
′

)
≤

≤ inf
Ψ∈G2

(
Ψ(b)g(b)− I2(b)g(b)− (P 1)

∫ b

a

[Ψ(t)− I2(t)]g′(t)dt

)
≤

≤ inf
Ψ∈G2

(Ψ(b)g(b)− I2(b)g(b)) =

(
inf

Ψ∈G2
[Ψ(b)− I2(b)]

)
g(b) = 0,

thanks to the properties of the integral function I2 and of g′. So we obtain:

inf
S∈F1

(
S(b)− I2(b)g(b) + (P 1)

∫ b

a

I2g
′

)
= 0,

that is

inf
S∈F1

S(b) = I2(b)g(b)− (P 1)

∫ b

a

I2g
′.

Analogously we can prove that

sup
Z∈S1

Z(b) = I2(b)g(b)− (P 1)

∫ b

a

I2g
′.

By virtue of the main properties of major and minor functions, we get:

0 ≤ inf
S∈F

S(b)− sup
Z∈S

Z(b) ≤ inf
S∈F1

S(b)− sup
Z∈S1

Z(b) = 0,

that is
inf
S∈F

S(b) = sup
Z∈S

Z(b),

getting P 2-integrability of fg + I ′2g
′ on [a, b], and

(P 2)

∫ b

a

(fg + I ′2g
′) = I2(b) g(b)− (P 1)

∫ b

a

I2g
′.

Now, by Theorem 4.2, I ′2 is P 1-integrable and, by the theorem of integration by parts for
the P 1-integral ([6, Theorem 8.1]), since g′ is Lipschitz, we get that I ′2g

′ is P 1-integrable too.
Observe that, by virtue of Theorem 4.1, I ′2g

′ is also P 2-integrable and

(P 2)

∫ b

a

I ′2g
′ = (P 1)

∫ b

a

[
(P 1)

∫ x

a

I ′2(t) g′(t) dt

]
dx.
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Thus, by the fact that the class of the P 2-integrable functions is linear, fg is P 2-integrable
too, and we get

(P 2)

∫ b

a

fg + (P 1)

∫ b

a

[
(P 1)

∫ x

a

I ′2(t) g′(t) dt

]
dx = I2(b)g(b)− (P 1)

∫ b

a

I2g
′, (25)

obtaining the assertion, at least when g and g′ are positive on [a, b].
In order to drop the positivity condition, observe that formula (25) holds when g is a

constant function (see [6, Proposition 7.2 i)]). From this and the boundedness of g, by
linearity, it follows that (25) is true, at least for any function g with Lipschitz positive (g)-
derivative in [a, b]: indeed, it will be enough to take a constant c∗ such that g(x) ≥ c∗ for all
x ∈ [a, b] and to consider the function g as the sum of g − c∗ and c∗.

Now we turn to the general case, giving up the positivity assumption on g′. Since g′

is Lipschitz, then, by [13, Theorem 12.4 (iii)], (g′)+ and (g′)− are two Lipschitz positive
functions. Let G+, G− be the integral functions of (g′)+, (g′)−, respectively. Then, by
the Torricelli-Barrow Theorem ([3, Proposition 4.37]), (G±)′ = (g′)±. By the Fundamental
Theorem of Calculus ([3, Theorem 4.28]), we get that g − (G+ − G−) is a constant. From
this, and since (25) is true when the role of g is played by G± and whenever g is a constant
function, we obtain that (25) holds for g and g′ in the general case. This completes the proof
of the theorem. �
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