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tegrably non empty bounded closed convex valued multifunctions in a separable Banach space

when it is not possible to apply embedding theorems.

1 Introduction

The study of measurable multifunctions has been developed extensively with applications to math-

ematical economics and optimal control theory by many authors. The natural approach, which

derives from the study of the integro differential inclusions, is due to Aumann in 1965 ([2]) and is
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based on the integration of measurable selections.

Unfortunately the Aumann integral does not satisfy all the usual properties of an integral. So it

seems to be natural to investigate whether the Aumann integral can be regarded as a Bochner or

Debreu integral, [5].

Hiai and Umegaki in [9] and Byrne in [3], using the classical Rädstrom embedding theorem (see

[12]), consider an integrable multifunction as a vector function, but to obtain this they have to take

only integrable multifunctions with convex and compact or weakly compact values; in the second

case, moreover, Byrne requires also that the multifunction is the limit of a sequence of measurable,

simple multifunctions since the space of all convex weakly compact subsets of a Banach space X is

in general not separable.

In [10] and [13] the authors introduced the Bochner integral for multifunctions, with values in

non empty, bounded, closed and convex subsets of a locally convex topological vector space, with

respect to finitely additive measures.

In [11] the Authors compare the Bochner and Aumann integrals, for compact convex valued multi-

functions, in the finitely additive setting by making use of the results obtained by Hiai and Umegaki

in [9] and the Stone transform which allows to obtain the results in finitely additive setting via the

same results in the countable additive setting.

Here we consider the space cb(X) of all non empty, bounded, closed, convex subsets of a separable

space X and we compare the Bochner integral, introduced in [10] and [13], with the Aumann inte-

gral when the Rädstrom embedding theorem, used in [9], [3] and [11], fails to be true.

In this paper we obtain coincidence results between the two integrals for totally measurable mul-

tifunctions F when X∗ has the Radon-Nikodym property.

The Author would like to thank Professor Candeloro and Professor Martellotti for their helpful

suggestions and for their patience in reading several versions of this paper.
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2 Notations and Preliminaries

We will use the following definitions and notations.

X is a separable Banach space.

X∗ is the topological dual of X, X∗s (resp. X∗b ) is the vector space X∗ equipped with the

weak∗ σ(X∗, X) (resp. norm) topology.

BX (resp. BX∗) is the closed unit ball in X (resp. X∗b ).

cb(X) is the collection of all non empty convex closed bounded subsets of X.

The addition +̇ : cb(X)× cb(X)→ cb(X) is defined as follows : A+̇B = cl{A+B}.

The addition +̇satisfies the following properties: if A,B ∈ cb(X) and λ is a real number

(A+̇B)+̇C = A+̇(B+̇C), A+̇B = B+̇A,

λ(A+̇B) = λA+̇λB, λ1(λ2A) = (λ1λ2)A, 1A = A

Moreover if A+̇C = B+̇C then A = B. (Cancellation law )

If Ai, i = 1, · · · , n are in cb(X) we denote by
∑n
i=1Ai the set A1+̇ · · · +̇An.

δ∗(x′, A) = sup{< x′, x >: x ∈ A} is the support function of a subset A ⊂ X.

If A and B are subsets of X, the excess of A over B is

e(A,B) = sup{d(a,B) : a ∈ A}

and the Hausdorff distance between A and B is

h(A,B) = max{e(A,B), e(B,A)}.

For the properties of h see Proposition 1.2 of [10].

The excess e(A, {0}) = h(A, {0}) is denoted by |A|. Then

|A| = sup{‖a‖ : a ∈ A}.

(Ω,Σ, µ) is a probability space.

A multifunction F : Ω→ cb(X) is Effros-measurable (shortly-measurable) if the set F−U = {ω ∈
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Ω : F (ω) ∩ U 6= ∅} belongs to Σ for any open subset U of X.

L1
cb(X) is the subspace of all the measurable multifunctions F : Ω→ cb(X) such that |F | ∈ L1

IR+ ,

where two multifunctions F1 and F2 are considered identical if there exists a µ-null set N such

that, for every ω 6∈ N, F1(ω) = F2(ω).

A measurable multifunction F : Ω→ cb(X) is said to be integrably bounded if there exists an

integrable non negative function g : Ω → IR+
0 such that for a.e. ω ∈ Ω, |F (ω)| ≤ g(ω). If F is

measurable and integrably bounded then F ∈ L1
cb(X).

It is known that F ∈ L1
cb(X) if and only if the set of all the Bochner integrable selections of F ,

denoted by S1
F , is non empty and bounded in L1(µ,X) (see for example Theorem 3.2 of [9]).

The Aumann integral (A)−
∫
E Fdµ of F over a measurable set E is given by

(A)−
∫
E
Fdµ :=

{∫
E
fdµ : f ∈ S1

F

}
.

E1
cb(X) is the subset of all the simple multifunctions F : Ω→ cb(X). One has E1

cb(X) ⊂ L1
cb(X).

A measurable multifunction F : Ω→ cb(X) is totally measurable if there exists a sequence of simple

multifunctions (Fn) with values in cb(X) such that limn→∞h(Fn(ω), F (ω)) = 0 for a.e. ω ∈ Ω.

We denote by M1
cb(X) the subspace of L1

cb(X) of all totally measurable and integrably bounded

multifunctions.

If F is totally measurable and single valued, by definition the range of F is separable.

When dealing with the multivalued case, in [9] an example is given (Example 3.4), of a measur-

able multifunction with convex, weakly compact values which is not the limit of any a.e. convergent

sequence of simple multifunctions, convex weakly compact valued.

Although the space (cb(X), h) (here h is the Hausdorff distance) is not separable, it is complete,

see [4], Theorem II.14.
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Definition 2.1 If F : Ω→ cb(X) is a simple measurable multifunction, namely

F =
n∑
i=1

Ci1Ai , Ci ∈ cb(X), i = 1, · · · , n

we define its Bochner integral as follows: for every E ∈ Σ,

(B)−
∫
E
Fdµ =

n∑
i=1

Ciµ(Ai ∩ E).

The integral does not depend upon the representation of F and, if F,G ∈ E1
cb(X), then, for every

E ∈ Σ

(B)−
∫
E

(F +̇G)dµ = (B)−
∫
E
Fdµ+̇(B)−

∫
E
Gdµ.

Definition 2.2 A totally measurable multifunction F : Ω→ cb(X) is Bochner-integrable (shortly

(B)-integrable) iff there exists a sequence (Fn)n of simple multifunctions, Fn ∈ E1
cb(X), such that

(i) h(Fn, F ) converges to zero µ-a.e.;

(ii) limm,n→∞
∫
Ω h(Fn, Fm)dµ = 0.

We shall say that (Fn)n is a defining sequence for F . Then, by our definition, for every measurable

set E ∈ Σ, the sequence
(

(B)−
∫
E
Fndµ

)
n

is Cauchy in (cb(X), h). Consequently it converges in

(cb(X), h), so that we can define the (B)-integral of F over E as

(B)−
∫
E
Fdµ := lim

n→∞
(B)−

∫
E
Fndµ.

We observe that the integral is well defined ([10]) and we denote by L1
cb(X) the space of all (B)-

integrable multifunctions.

According to the notations adopted in [9], L1
cb(X) is the ∆-closure of E1

cb(X), where ∆ is the

distance

∆(F,G) =
∫

Ω
h(F,G)dµ.

Generally we have the following relationship (see [9], (3.4)):

L1
cb(X) ⊂ L1

cb(X)
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and the two spaces are closed under addition +̇ by Theorem 3.5 of [9].

Proposition 2.3 The Bochner integral is additive, namely if F,G ∈ L1
cb(X) then F +̇G ∈ L1

cb(X)

and, for every E ∈ Σ,

(B)−
∫
E

(F +̇G)dµ = (B)−
∫
E
Fdµ+̇(B)−

∫
E
Gdµ.

Proof : it is obvious.

Moreover:

Theorem 2.4 Let F,G be (B)-integrable multifunctions. Then∣∣∣∣(B)−
∫
Fdµ

∣∣∣∣ ≤ ∫ |F |dµ,
h

(
(B)−

∫
Fdµ, (B)−

∫
Gdµ

)
≤
∫
h(F,G)dµ.

Proof: the proof is analogous to the one given in Theorem 2.6 of [10]

3 Comparison between the integrals

Our main interest is to give sufficient conditions for the coincidence of the Aumann and the Bochner

integral for totally measurable multifunctions F : Ω→ cb(X).

Before stating our main result, Theorem 3.11, we summarize some properties.

Lemma 3.1 If C ∈ cb(X) then

C =
⋂
ε>0

(
C+̇εBX

)
.

Proof: Obviusly C ⊂
⋂
ε>0

(
C+̇εBX

)
. Let x ∈

⋂
ε>0

(
C+̇εBX

)
and let εn ↓ 0.

Since x ∈
⋂
εn>0

(
C+̇εnBX

)
, for every n ∈ IN there exist xn ∈ C and un ∈ BX such that

‖x− xn − εnun‖ ≤ εn.

εnun converges strongly to zero since the sequence (un)n is bounded, then xn converges to x. The

conclusion follows from the closedness of C.

6



Proposition 3.2 Let F ∈ E1
cb(X). Then, for every E ∈ Σ, we have

cl{(A)−
∫
E
Fdµ} = (B)−

∫
E
Fdµ.

Proof: Obviously S1
F 6= ∅. Let F =

∑n
i=1Ci1Ei , Ei ∩ Ej = ∅ for i 6= j; then, for every E ∈ Σ, we

have

n∑
i=1

Ciµ(E ∩ Ei) = cl{
n∑
i=1

xiµ(E ∩ Ei), xi ∈ Ci, i = 1, · · · , n} =

= cl{
∫
E

(
n∑
i=1

xi1Ei)dµ, xi ∈ Ci, i = 1, · · · , n} ⊂ cl{(A)−
∫
E
Fdµ}

and so

(B)−
∫
E
Fdµ ⊂ cl{(A)−

∫
E
Fdµ}.

We are now proving the converse inclusion. Let s ∈ S1
F . We may suppose that s(ω) ∈ F (ω) for

every ω ∈ Ω. Since s : Ω→ X is integrable, it admits a defining sequence (sn)n of simple functions.

Let ε > 0 . Let δ be such that

(3.2.1) µ(E) ≤ δ implies
∫
E
|F |dµ ≤ ε.

By the Egoroff’s Theorem, there exists Ωδ ∈ Σ with µ(Ω−Ωδ) ≤ δ and (sn)n converges uniformly

to s on Ωδ. Fix σ > 0. There exists a positive integer Nσ such that for every n ≥ Nσ ∀ ω ∈

Ωδ, sn(ω) ⊂ s(ω)+σBX . Thus, for each i, and for ω ∈ Ωδ∩Ei, we have sn(ω) ∈ Ci+̇σBX whenever

n ≥ Nσ. Now we assert that

(3.2.2)
∫
E∩Ωδ

sndµ ∈
n∑
i=1

µ(E ∩ Ei ∩ Ωδ)(Ci+̇σBX) ⊂ (B)−
∫
E∩Ωδ

Fdµ+̇σµ(E ∩ Ωδ)BX .

To simplify the reading set αi = µ(E ∩ Ei ∩ Ωδ) and α = µ(E ∩ Ωδ), so that
∑n
i=1 αi = α and

(3.2.3)
n∑
i=1

αi(Ci+̇σBX) ⊆
n∑
i=1

αiCi+̇σαBX .

Hence (3.2.2) follows by our definition of (B)-integral for simple multifunctions. Since

lim
n→∞

∫
E∩Ωδ

sndµ =
∫
E∩Ωδ

sdµ, for every ε > 0 there exists n > Nσ such that, for all n > overlinen,∥∥∥∥∫
E∩Ωδ

sndµ−
∫
E∩Ωδ

sdµ

∥∥∥∥ ≤ ε
7



and then, by (3.2.2),

∫
E∩Ωδ

sdµ ∈ εBX +
∫
E∩Ωδ

sndµ

⊂ εBX+̇
(

(B)−
∫
E∩Ωδ

Fdµ+̇σµ(E ∩ Ωδ)BX

)
.

So

∫
E∩Ωδ

sdµ ∈
⋂
ε>0

εBX+̇
(

(B)−
∫
E∩Ωδ

Fdµ+̇σµ(E ∩ Ωδ)BX

)

and, by Lemma 3.1 we obtain that

(3.2.4)
∫
E∩Ωδ

sdµ ∈ (B)−
∫
E∩Ωδ

Fdµ+̇σµ(E ∩ Ωδ)BX .

On the other hand, by (3.2.1), we get

(3.2.5)

∥∥∥∥∥
∫
E∩Ωc

δ

sdµ

∥∥∥∥∥ ≤
∫
E∩Ωc

δ

‖s‖dµ ≤
∫

Ωc
δ

|F |dµ ≤ ε.

Then (3.2.4) and (3.2.5) yield

(3.2.6)
∫
E
sdµ ∈ (B)−

∫
E∩Ωδ

Fdµ+̇σµ(E ∩ Ωδ)BX+̇εBX .

By virtue of the classical cancellation law, we first have

(3.2.7)

h

(
(B)−

∫
E∩Ωδ

Fdµ+̇σµ(E ∩ Ωδ)BX+̇εBX , (B)−
∫
E
Fdµ+̇σµ(E)BX+̇εBX

)
≤

≤ h

(
(B)−

∫
E∩Ωδ

Fdµ, (B)−
∫
E
Fdµ

)
+ σ[µ(E)− µ(E ∩ Ωδ)] ≤

≤ h

(
(B)−

∫
E∩Ωc

δ

Fdµ, {0}
)

+ σ[µ(E − Ωδ)] ≤
∫
E∩Ωc

δ

|F |dµ+ σδ ≤ ε+ σδ

by the choice of σ, δ and ε. Then it follows from (3.2.6) and the estimate (3.2.7)

∫
E
sdµ ∈ (B)−

∫
E
Fdµ+̇ [σ(µ(E) + δ) + 2ε]BX .

Since (B)−
∫
E
Fdµ is non empty, bounded, closed and convex, by Lemma 3.1, we deduce that

∫
E
sdµ ∈ (B)−

∫
E
Fdµ,
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and then

cl{(A)−
∫
E
Fdµ} ⊂ (B)−

∫
E
Fdµ.

Theorem 3.3 Let F ∈M1
cb(X). If F is (B)-integrable, then for every E ∈ Σ, we have

cl{(A)−
∫
E
Fdµ} ⊂ (B)−

∫
E
Fdµ.

Proof: Let (Fn)n be a defining sequence for F . Let s be an integrable selection of F ; then

there exists a sequence of simple functions (sn)n which converges to s in L1(Ω,Σ, µ,X). We

denote with the same simbol (sn)n a subsequence which converges to s almost everywhere. Since

d(s(ω), Fn(ω)) ≤ h(F (ω), Fn(ω)) → 0 and d(sn(ω), Fn(ω)) ≤ ‖sn(ω) − s(ω)‖ + d(s(ω), Fn(ω)), we

have that limn→∞ d(sn, Fn) = 0 µ−a.e.. We can represent sn and Fn with the same decomposition

(Enj ), j = 1, · · · , pn of Ω:

Fn =
pn∑
j=1

Cnj 1Enj sn =
pn∑
j=1

σnj 1Enj ,

so that d(sn, Fn) is constant on each Enj ; for every n ∈ IN and j ∈ {1, · · · , pn} there is xnj ∈ Cnj

such that ‖σnj − xnj ‖ ≤ d(σnj , C
n
j ) + 1

n ; thus tn(ω) :=
∑pn
j=1 x

n
j 1Enj (ω) ∈ Fn(ω). By construction, we

have,

‖tn − s‖ ≤ ‖tn − sn‖+ ‖sn − s‖ ≤ d(sn, Fn) + ‖sn − s‖+
1
n

so limn→∞‖tn − s‖ = 0 µ−a.e. Moreover

∫
E
‖tn − s‖dµ ≤

∫
E
d(sn, Fn)dµ+

∫
E
‖sn − s‖dµ+

1
n
µ(E) ≤

≤
∫
E
h(Fn, F )dµ+

∫
E
‖sn − s‖dµ+

1
n
µ(E).

Hence, for every E ∈ Σ, limn→∞

∫
E
‖tn − s‖dµ = 0; then, since

∫
E
tndµ ∈ (B) −

∫
E
Fndµ, and∫

E
sdµ ∈ (A)−

∫
E
Fdµ, for ε > 0 fixed there is a Nε such that n ≥ Nε implies

∫
E
sdµ ∈ (B)−

∫
E
Fndµ+̇εBX .
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By our definition of (B)-integral, we have

limn→∞(B)−
∫
E
Fndµ = (B)−

∫
E
Fdµ,

whence, by Lemma 3.1, ∫
E
sdµ ∈ (B)−

∫
E
Fdµ.

The converse inclusion is known when X is reflexive, see [9], Theorem 4.5 2◦. In this case in

fact it is possible to use the Rädstrom embedding theorem.

In order to prove the equality in the case when X is not reflexive we recall the following results:

Theorem 3.4 ([6], Theorem 5) Assume X∗ has the Radon-Nikodym property. Then every bounded

sequence in L1(µ,X) has a subsequence whose arithmethic means are weakly Cauchy almost surely.

Theorem 3.5 ([6], Theorem 6) Assume X∗ has the Radon-Nikodym property, and let A be a

bounded subset in L1(µ,X). Then A is weakly relatively compact if and only if A is uniformly

integrable and every sequence in A has a subsequence whose arthmethic means are weakly convergent

almost surely.

Theorem 3.6 ([7], Theorem 2.1)Let A be a bounded subset of L1(µ,X). Then the following are

equivalent:

(1) A is weakly relatively compact;

(2) A is uniformly integrable, and, given any sequence (fn)n in A, there exists a sequence (gn)n,

with gn ∈ co{fk, k > n} such that (gn)n is norm convergent in X a.e. in Ω.

Remark 3.7 We observe that if F : Ω → cb(X) is integrably bounded and measurable then S1
F

is a bounded subset of L1(µ,X), moreover it is convex because F has convex values and is closed:

in fact if (fn)n is a sequence in S1
F such that fn converges to f0 in L1(Ω,Σ, µ,X) then almost
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everywhere fn converge to f0 so, for every ε > 0 there exists a k(ε) ∈ IN such that, for every

n > k(ε), µ-almost everywhere ‖f(ω) − fn‖ ≤ ε. But fn ∈ S1
F , so f0(ω) ∈ F (ω)+̇εBX . Applying

Lemma 3.1 f0(ω) ∈ F (ω), µ-almost everywhere.

From now on we suppose that X∗ has the Radon-Nikodym property.

Lemma 3.8 If F : Ω → cb(X) is integrably bounded and measurable then S1
F is weakly relatively

compact.

Dim: By Remark 3.7 S1
F is a bounded closed convex subset of L1(µ,X) moreover

lim
µ(E)→0

∫
E
fdµ = 0,

uniformly for f ∈ S1
F , in fact there exists g ∈ L1(µ) such that for every f ∈ S1

F and for every

E ∈ Σ, ∫
E
|f |dµ ≤

∫
E
gdµ,

so the assertion follows from the absolute continuity of the integral of g with respect to µ and using

Theorems 3.4 and 3.5.

As a consequence we obtain:

Proposition 3.9 Let F : Ω → cb(X) be a measurable, integrably bounded multifunction. Then

(A)−
∫
Fdµ is a closed subset of X.

Proof: Let (xn)n be a sequence in (A)−
∫
Fdµ which converges to x0. By definition there exists

(fn)n in S1
F such that xn =

∫
fndµ. By Lemma 3.8, since for a subset of a Banach space the weak

relative compactness is equivalent to the weak relative sequential compactness, there exists f0 ∈ S1
F

such that x0 =
∫
f0dµ.
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Proposition 3.10 Let F : Ω → cb(X) be a (B)-integrable multifunction, then there exist a mea-

surable, integrably bounded multifunction G : Ω → cb(X) and a sequence of simple multifunctions

(Gn)n such that

(3.10.1) (Gn)n is defining for F ;

(3.10.2) for every n ∈ IN Gn(ω) ⊂ G(ω) µ-a.e.

Proof: From Theorem 2.4 F is integrably bounded and let g be a µ-integrable scalar function

which dominates F . Let G(ω) = 2g(ω)BX . Since g is measurable and X is separable then G

admits a Castaing representation and hence G is measurable by Proposition III.9 of [4]. Since 2g

is µ-integrable it is possible to construct an increasing sequence (gn)n of simple functions which

converges to g. Let now (Fn)n be a defining sequence for F and denote by Ω0 the set of ω ∈ Ω

such that Fn(ω) does not converge to F (ω) or |F (ω| > g(ω), by Ω1 the set of points ω such that

g(ω) = 0 and by Ωn the set of points ω such that Fn(ω) ∩ gn(ω)BX = ∅. We consider now the

sequence of simple multifunctions defined as follows:

Gn(ω) =


{0} if ω ∈ Ω0 ∪ Ω1 ∪ Ωn;

Fn(ω) ∩ gn(ω)BX otherwise.

For every n ∈ IN Gn is measurable since Fn, gn are measurable and simple. We want to show that

(Gn)n satisfies 3.10.1 and 3.10.2. We claim that Gn converges to F µ-a.e..

For every ω ∈ Ω1 F (ω) = Gn(ω) = {0}.

Suppose now that ω ∈ Ω \ (Ω0 ∪ Ω1). Let ε > 0 be such that 2g(ω) − ε > g(ω) + ε. Then there

exists n ∈ IN such that, for every n ≥ n,

g(ω) + ε < 2g(ω)− ε ≤ gn(ω); h(Fn(ω), F (ω)) ≤ ε.

So for every n ≥ n

Fn(ω) ⊂ F (ω)+̇εBX ⊂ (g(ω) + ε)BX
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and then ω 6∈ Ωn, and Fn(ω) ⊂ gn(ω)BX , so Gn(ω) = Fn(ω) and converges to F in Ω \ Ω0.

Moreover, since h(Gn(ω), {0}) ≤ 2g(ω) for every ω ∈ Ω,
∫
h(G, {0})dµ is absolutely continuous

with respect to µ uniformly in n ∈ IN and hence by Vitali Theorem 2.14, of [10], for every E ∈ Σ,

limn→∞

∫
E
Gndµ =

∫
E
Fdµ.

We are now ready to prove the following equality:

Theorem 3.11 Let F : Ω→ cb(X) be a (B)-integrable multifunction. Then, for every E ∈ Σ

(A)−
∫
E
Fdµ = (B)−

∫
E
Fdµ.

Proof: One inclusion is given in Theorem 3.3; we now prove the converse inclusion, that is

cl{(A)−
∫
E
Fdµ} = (A)−

∫
E
Fdµ ⊂ (B)−

∫
E
Fdµ.

Let G and (Gn)n be defined as in Proposition 3.10. For every E ∈ Σ fixed let tE ∈ (B)−
∫
E
Fdµ.

d

(
tE , (B)−

∫
E
Gndµ

)
≤ h

(
(B)−

∫
E
Gndµ,

∫
E
Fdµ

)
≤

≤
∫
E
h(Gn, F )dµ ≤

∫
Ω
h(Gn, F )dµ,

so, since for every n ∈ IN , (B)−
∫
E
Gndµ = (A)−

∫
E
Gndµ, there exists a sequence (fn)n ∈ S1

Gn

such that,
∫
E
fndµ → tE . Since for every n ∈ IN , S1

Gn
⊂ S1

G, it follows that
⋃
n S

1
Gn
⊂ S1

G. G

satisfies all the hypothesis of Lemma 3.8 so S1
G is weakly sequentially compact. Then there exists

f0 ∈ S1
G and a subsequence (fnk)nk of (fn)n such that, for every A ∈ Σ,

lim
nk→∞

∫
A
fnkdµ =

∫
A
f0dµ.

So tE =
∫
E
f0dµ. We have now to proof that Let (gk)k = (fnk)nk be the subsequence which

converges weakly to f0. Since (Gnk)nk is defining for F , there exists a set N with µ(N) = 0 such

that for every ω 6∈ N and for every ε > 0 there exists n(ε, ω) such that for every nk ≥ n(ε),

d(gk, F ) ≤ h(Gnk , F ) ≤ ε.
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From (2) of Theorem 3.6 there exists some sequence of convex combination of gk which converges

to f0 in X-norm. Let l =
∑p
j=1 αjgki ,

∑p
j=1 αj = 1 be a convex combinations of (gk)k such that

‖l(ω)− f0(ω)‖ ≤ ε.

Since F is convex valued

d(l(ω), F (ω)) = d(
p∑
j=1

αjgki(ω), F (ω)) ≤
p∑
j=1

αjd(gki(ω), F (ω)) ≤

≤
p∑
j=1

αjh(Gnki (ω), F (ω)) ≤ ε.

So,

d(f0, F ) ≤ ‖f0 − l‖+ d(l, F ) ≤ 2ε.

For the arbitrariness of ε > 0 we obtain that d(f0, F ) = 0 µ-almost everywhere, hence f0(ω) ∈

F (ω) µ-almost everywhere.
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[6] S. DÍAZ ”Weak compactness in L1(µ,X)”, Proc. Amer. Math. Soc. 124, N. 9, (1996) 2685-

2693.

[7] J. DIESTEL–W.M. RUESS–W. SCHACHERMAYER ”Weak compactness in L1(µ,X)”, Proc.

Amer. Math. Soc. 118, N. 2, (1993) 447-453.

[8] N. DUNFORD–J. T. SCHWARTZ ”Linear Operators Part I” Interscience, New York, (1958).

[9] F. HIAI–H. UMEGAKI ”Integrals, Conditional Expectations, and Martingales of Multivalued

Functions”, J. of Multivariate Anal. 7 (1977) 149-182.

[10] A. MARTELLOTTI–A. R. SAMBUCINI ”A Radon-Nikodym theorem for multimeasures”,

Atti Sem. Mat. Fis. Univ. Modena XLII, (1994) 579-599.

[11] A. MARTELLOTTI–A. R. SAMBUCINI ”On the Comparison between Aumann and Bochner

Integrals” preprint.
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